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ABSTRACT

We study the problem of counting the number of particles in
a closed volume where the particles motion are modeled by
a Brownian motion process. This problem arises in many
biological and chemical sensing experiments, e.g., count-
ing the number of analytes in blood sample, air pollutant
measurement, etc. Finding the exact count of particles is
challenging in these systems and one generally relies on
an estimate based on the sample readouts. We study the
statistical properties of the counting process in equilibrium
and present the fundamental detection and estimation limi-
tations. In particular, we demonstrate that the count process
is inherently noisy and has a quantum-limit signal to noise
ratio.

1. INTRODUCTION

Sensors by definition are devices that respond to thermal,
electromagnetic, mechanical, or other physical stimulus by
producing a signal usually of electrical nature. Biological
sensors usually measure the number of particles in the close
vicinity of the sensing element [1].

In most chemical and biological experiments and lab-
oratory tests, the sensors are coupled with an aqueous en-
vironment where target particles can randomly move in a
three dimensional volume. The random motion of the par-
ticles in absence of any external force is usually modeled
by Brownian motion. As a result of the Brownian motion,
some particles enter the sensing volume of a sensor, i.e., the
finite volume which the sensor can count, and some parti-
cles in the sensing area move outside the area; hence gener-
ating some random fluctuations in the readout in the given
test sample.

In this paper, we try to characterize the statistical proper-
ties of these random fluctuations. In practical situations, the
output of a sensor is an analog time-varying signal which is
also corrupted by the amplifier noise, i.e., transducer noise,
which generally can be modeled as an additive white Gaus-
sian noise with zero mean. In order to characterize the fun-
damental quantum limits of the sensing process, in this first
study, we neglect the effect of amplifier noise and assume
that the output of each sensor is a discrete random variable
taking integer values.

The final goal of this paper is to find out the fundamen-
tal limitations imposed by the random nature of the quantum
sensing process and comparing the effect of inherent noise
of the process with additive noise of post-processors e.g.,
amplifier and analog to digital quantizer. Specifically, we
compute the autocorrelation function of the observed pro-
cess as the process evolves in time. Power spectral den-
sity (PSD) of the observed process can be computed as the
Fourier transform of the autocorrelation function and is of
particular importance since it can practically be measured
in real experiments. Moreover, it provides some insight into
the relative effect of post-processing noise on the overall
performance of the measurement system [2].

Section II of this paper is dedicated to the model pa-
rameters and assumptions made in solving the problem. In
Section III the stochastic analysis of the process has been
presented. Analysis of time-dependent fluctuations are pre-
sented in Section IV and Section V concludes the paper.

2. PROBLEM DEFINITION AND MODEL

Consider the general sensor system model shown in Fig 1.
We assume there are an unknown number of N particles in
a given volume moving according to independent Brownian
motions. We assume there are K disjoint sensors in the
area. We denote the readout of the i’th sensor at time t by
ni(t), 1 ≤ i ≤ K, which is the number of particles in an
effective volume around the i’th sensor.

We assume there are n0(t) particles in the volume not
present in any of the sensing volumes such that for each
time t we have

n0(t) +

K
∑

i=1

ni(t) = N.

Consider n(t) = (n0, n1, . . . , nK)(t) which is a vector of
K + 1 elements. Time evolution of state vector n can be
modeled as a Markov process (n(t), t ∈ R) with state space

SN =

{

n ∈ ZK+1
+ :

K
∑

i=0

ni = N

}

.
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Fig. 1. N particles randomly moving in a volume with K
sensors. Each sensor has an effective volume and each par-
ticle randomly moves into or out of the effective volume
around each sensor.

Define transformed states

T0i(n) = (n0 − 1, n1, . . . , ni−1, ni + 1, ni+1, . . . , nK),

Ti0(n) = (n0 + 1, n1, . . . , ni−1, ni − 1, ni+1, . . . , nK).

For small enough δt, assume the probability that any single
particle enters the i’th sensing volume is piδt and the proba-
bility that any single particle inside the i’th sensing volume
moves out is qiδt. More precisely,

P{n(t + δt) = T0i(n)|n(t) = n} = pin0δt + o(δt),

P{n(t + δt) = Ti0(n)|n(t) = n} = qiniδt + o(δt),

where lim o(δt)/δt → 0 as δt → 0. Now assume a Markov
process with transition rates

q(n, T0i(n)) = pin0,

q(n, Ti0(n)) = qini,

with stationary equilibrium state probability distribution π(n|N).
Distribution π(n|N) is then limiting, ergodic, and station-
ary, meaning that ∀n ∈ S,

P{n(t) = n|N} → π(n|N), as t → ∞,

1

T

∫ T

0

I(n(τ) = n|N)dτ → π(n|N), w.p.1 as T → ∞,

P{n(0) = n|N} = π(n|N) ⇒ P{n(t) = n|N} = π(n|N),

∀t > 0. As a result, the stationary equilibrium distribution
π(n|N) is a sufficient first order conditional statistic of the
process.

Next section of the paper is dedicated to finding this
probability distribution function. As a result of the analy-
sis in the next section, a posterior probability density of the
number of particles π(N |n) can be computed using a priori
probability density function π(n|N).

3. ANALYSIS

The process as modeled in Section II is a form of a closed
migration process where transitions are only allowed be-
tween free volume, marked by 0, and sensor volumes, i =
1, . . . , K. The closed migration process naturally would
arise from independent motion of particles [3]. No tran-
sition is allowed between sensor volumes in the model we
consider in this paper. Although the analysis presented in
this section can be slightly modified to consider this unreal-
istic case, we neglect this case here, since it does not provide
any extra intuition.

First let’s assume N = 1, i.e., a single particle per-
forms a random walk with equilibrium distribution αi where
∑K

i=1 αi = 1 and αis are the solution of the following set
of linear equilibrium equations known as full balance and
partial balance equations:

α0

K
∑

i=1

pi =

K
∑

i=1

αiqi,

αjqj = α0pj , j = 1, . . . , K.

Solving this set of linear equations give

α0 =
1

1 +
∑K

i=1
pi

qi

, αj =
pj

qj

α0.

Now we are ready to solve the balance equations for the
general case where there are a given number of N particles
in the volume. The full balance equation can be written as

π(n|N)
K�

i=1

[q(n, T0i(n)) + q(n, Ti0(n))] =

K�

i=1

[π(T0i(n)|N)q(T0i(n),n) + π(Ti0(n)|N)q(Ti0(n),n)],

and the partial balance equations are

π(n|N)
K�

i=0

q(n, T0i(n)) =
K�

i=1

π(T0i(n)|N)q(T0i(n),n),

π(n|N)q(n, Tj0(n)) = π(Tj0(n)|N)q(Tj0(n),n).

Noting that q(n, Tj0(n)) = qjnj , q(n, T0j(n)) = pjn0,
q(Tj0(n),n) = pj(n0 + 1) and q(T0j(n),n) = qj(nj + 1)
it can be shown that

π(Tj0(n)|N)

π(n|N)
=

nj

αj

α0

n0 + 1
=

nj

n0 + 1

qj

pj

,

π(T0j(n)|N)

π(n|N)
=

n0

α0

αj

nj + 1
=

n0

nj + 1

pj

qj

,

and hence the equilibrium distribution can be written as

π(n|N) = BN

K
∏

i=0

αni

i

ni!
, ∀n ∈ SN ,



where constant BN is chosen such that
∑

n∈SN
π(n|N) =

1. Alternatively, we can write,

π(n|N) = BN

αN
0

n0!

K
∏

i=1

(pi/qi)
ni

ni!
, ∀n ∈ SN .

For the rest of this paper, we assume the sensors are sta-
tistically equivalent, i.e., p1 = p2 = · · · = pK = p and
q1 = q2 = · · · = qK = q. With this simplifying assump-
tion, we can write,

π(n|N) = BN

αN
0

n0!

(

p

q

)N−n0 K
∏

i=1

1

ni!
, ∀n ∈ SN ,

or equivalently

π(n1, . . . , nK |N) = BN

αN
0

(

p
q

) � K

i=1
ni

(

N −
∑K

i=1 ni

)

!

K
∏

i=1

1

ni!
.

The above equation can be used to provide the best esti-
mate of N given sensor observations n1, . . . , nK . If N is
uniformly distributed or if we have no prior knowledge of
its distribution, maximum a posteriori estimate of N given
sensor measurements is equal to the maximum likelihood
estimate, hence,

N̂ = arg max
N

π(N |n1, . . . , nK) = arg max
N

π(n1, . . . , nK |N).

Therefore, the best estimate of the number of particles based
on the set of observations (n1, . . . , nK) is given by

N̂ = arg max
N

BN

(

q

q + Kp

)N
1

(

N −
∑K

i=1 ni

)

!
.

In particular if we have only one sensor, i.e., K = 1, we
have

π(n|N) = BN

(

q
p+q

)N

n!(N − n)!

(

p

q

)n

.

Solving the equation
∑N

i=1 π(i|N) = 1, we obtain BN =
N !. Therefore,

N̂ = arg max
N

N !

(N − n)!

(

q

p + q

)N

≈ n

(

1 +
q

p

)

,

which is an un-biased estimator of N , i.e., E(N̂ |N) = N .
Moreover, it can be shown that

E[(N̂ − N)2|N ] =
Nq

p
.

The conditional quantum-limit signal to noise ratio can be
defined as [4]

SNRQL =
N2

E[(N̂ − N)2|N ]
=

Np

q
.

This result is quite intuitive, in the sense that sensors with
larger effective volume have larger p and smaller q and hence
result in a better SNR. Moreover, SNR linearly grows with
the number of particles, the better SNR can be obtained with
a larger number of particles N .

It can also be shown that if all K sensors are statistically
equivalent, BN = N ! and

N̂ ≈

(

1 +
q

p

)

n.

It can also be shown that for the case of statistically equiva-
lent sensors, BN = N !, and

N̂ ≈

(

1 +
q

Kp

) K
∑

i=1

ni,

i.e., the individual sensor readouts are not important and as
far as the estimation is concerned, the sensors together act
like a single larger sensor reading the aggregate number of
particles in all sensor volumes.

4. AUTO-CORRELATION AND TIME
DEPENDENCE

In this section, we assume there is only one sensor (or one
large equivalent sensor) with readout n(t) over time and find
the autocorrelation function of the random process n(t).
This analysis is of particular interest since it results in the
power spectral density of the output signal which can be
measured in practical experiments.

We assume time interval δt is chosen small enough such
that (1 − pδt)(1 − qδt) ≈ 1 − (p + q)δt, i.e., at each time
interval δt, no more than one particle enters or exits a sen-
sory area. We would like to find the autocorrelation function
Rn(τ) where

Rn(τ) = E[n(t)n(t + τ)|N ]

= E[n(0)n(τ)|N ]

= En(0){E[n(τ)|n(0)]n(0)|N}.

First, let’s focus on E[n(τ)|n(0)]. Assuming that j = |τ |/δt,
it can be shown that

Tj = E[n(jδt)|n(0) = n]

= En((j−1)δt){E[n(jδt)|n((j − 1)δt), n(0) = n]}

= En((j−1)δt){E[n(jδt)|n((j − 1)δt)]|n(0) = n}

= pNδt + (1 − (p + q)δt)Tj−1.

Noting that T0 = n and solving the recursive equation for
Tj , we obtain

Tj = pN
1 − (1 − (p + q)δt)j

p + q
+ n(1 − (p + q)δt)j .



As δt → 0, we can write the above expression in terms of
the more interesting parameter |τ | = jδt as

Tj ≈ pN
1 − e−(p+q)|τ |

p + q
+ ne−(p+q)|τ |,

and as a result Rn(τ) can be simplified to

Rn(τ) =

(

Np

p + q

)2 (

1 +
q

Np
e−(p+q)|τ |

)

.

Taking the Fourier transform of the above expression, we
obtain the power spectral density of random process n(t)

Sn(ω) =

(

Np

p + q

)2 (

2πδ(ω) +
q/Np

(p + q)2 + ω2

)

.

This power spectral density has a Lorentzian profile and
shows that the behavior of the system is very similar to the
optical detection systems where inherent signal shot-noise
is taken into account [4]. If the amplification processes adds
a white noise with variance N0, it can be directly added to
the power spectral density (see Fig. 2).
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Fig. 2. Power Spectral Density (PSD) of the sensor output.

It can be seen from the figure above that in order to limit
the effect of thermal noise added during the amplification
process, the output signal can be filtered with a low-pass fil-
ter without considerably deteriorating the counting process.

Fig. 3 shows the power spectral density results of a sim-
ulation for N = 1000 and N = 6000 particles randomly
walking on a 100× 100× 100 unit box. The sensor volume
is modeled by a 10×10×10 cube in one side of the volume
and the number of particles in the sensor volume has been
counted an registered in a time interval of 256 time units. It
can be seen that although the shot-noise level is higher for
the case of N = 6000, as we expect, the signal to noise ratio
is also higher.
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Fig. 3. Simulation results for power spectral density of par-
ticles within the sensor volume, N = 1000 and N = 6000.

5. CONCLUSIONS

The goal of biochemical sensors is to quantify the number
of specific molecules present in the sample. In these sys-
tems, each individual sensing element counts the number
of particles within its proximity. The readout of the sys-
tem, originating from the number of particles present in the
sensing volume becomes a random process as a result of
random motion of particles. Here we have shown that the
fluctuation of the readout signal is a function of the prob-
ability of particles moving in and out of the sensing vol-
ume. A Markov process model has been applied to derive
the steady state power spectral density of the fluctuation,
which demonstrates that the output signal PSD has in fact
a Lorentzian profile. We have also provided the maximum
likelihood estimate of the number of particles based on our
observations which relates the best estimate to the physical
parameters of the sensor. The estimation techniques pre-
sented here can be applied to various biochemical systems.
In addition the model can potentially give insight into the
design of high performance and low noise biochemical de-
tectors.
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