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ABSTRACT sample. In these techniques quantification by comparison

A maximum a posterioffMAP) estimator for polymerase is carried out, assuming that the control and the target have
chain reaction (PCR) assays is presented. The estimation reMatching efficiencies. In addition, existing methods of PCR
lies on the replication efficiencies of the PCR assay and thedetection use different reporter molecules (e.g. fluorogenic
observed end-point concentration of the PCR product at anProbes [5]); thus in principle, each method detects certain
arbitrary cycle. This derivation is carried out in view of the aspects of amplification.

stochastic progression of the amplicons, and the assumption ~ Typically in quantitative PCR assays, we observe the
that the end-point concentrations for any particular initial quantities of the amplified strands or a combination of them,
value have a jointly Gaussian distribution. In addition, we from which we need testimatethe initial nucleic acid quan-
provide an extension for the estimator which can be appliedtities. In this paper, we model the quantities at each cycle as

to various quantitative PCR assays. random variables with statistics depending on the values of
the previous cycle and the amplification efficiencies. Based
1. INTRODUCTION on this model, we attempt to derive the best estimate of the

initial DNA concentrations in view of the observable ampli-

Amplification and quantification of specific sequences of €Ons. In Section 2, we present the basic model and in sec-
DNA molecules has become an essential part of many molecion 3 we give the solution to the estimation problem, using
ular biology procedures and experiments. The original num- ©nly the approximation that the observed amplicons have a
ber of target nucleic acid molecules present in a typical Gaussian dlstrlbl_mon given the initial con_centratlons_. We
sample is usually minuscule, making it practically unde- present the_ solut!on for the case wh_ere a I|n.ear_ comb!natlon
tectable via any direct means. Thus nucleic acid amplifi- of the amplicons is o_bserved in section 4 which is applicable
cation is necessary in different areas of research, diagnost® most PCR detection methods.

tics and forensic sciences. Currently various techniques for
nucleic acid amplification or quantification are available;
yet, an enzymatic amplification methodology which uses
temperature cycling, known as polymerase chain reaction L )
(PCR) [1], is by far the most common. Each PCR cycle Let Ay and By be the initial concentrations of the com-
in theory, should double the number of target DNA strands; Plémentary strands of the target DNA, and Jgt and B;
yetin practice, PCR shows lower efficiencies (defined as theP€ the corresponding concentrations following cyclef

probability of successful replication of individual strands). T CR: Note that dulring cycl&feach ;iﬂgle straq_d ofitype
There have been some attempts to model the stochas? Produces asingle strand of typewith probability P

tic process of PCR [2, 3] — all models assign a replication (& COMplete analysis of the probabiliti€} ;, Py , is pro-
probability to individual DNA strands, which can be consid- y|ded in [3]). In CyCIG_”' _the concentration of _typﬂ strands
ered constant within early and mid cycles of PCR (typically "c'€ases by, similarly the concentration of typé&

the first 20-25 cycles). Hence, estimation of the initial val- Strands increases iy, ,, thus,

ues of the DNA strands, based on the observed quantities, ;
calls for insight into the probability distribution of the PCR Ai = A+ UAB

amplicons (i.e. amplified strands). In practice, competitive B; = Bi-1+Uga, (1)
PCR methods [4] try to address this challenge by amplifying

additional samples with a known quantity of analogous nu- where,

cleic acid molecules (control samples) along with the target

2. AMPLIFICATION MODEL
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U’ 5 has a binomial distributions since it is the sun¥f ;

independent Bernoulli random trials each with success prob-

ability P’ ; [7]. A similar argument follows fol/} ,.

The goal of a typical quantitative PCR assay ie#bi-
mate A, and By given A,, and B,,. From the experimental
setup, we know that eithety = By, or By = 0, and so in
both cases it suffices to estimalg. From estimation the-
ory we know that the best estimator 4f, is themaximum
a posteriori(MAP) estimator [8], given byd;

A() arg max P(A() = a0|An, Bn)
ag
Usually we have no prior knowledge abadig except that
it lies within a certain range, and so we assume a uniform
prior on Ay over its range. Although not presented here, itis

straightforward to extend this analysis to the case where the

prior distribution is not uniform but is known. Using Bayes’
rule,

P(Ay, B,|Ao)P(Ap)
P(Ao|An, Bp) =
(AolAy, Br) P(A,, B,)
= AAO = argmaXP(Anan|AO = a’o)

A, andB,, are strictly integers, however even for small

(n > 5), A, and B,, are generally quite large (greater than
100) and the distribution od iy, Bx | Ao can be well approx-
imated by a joint Gaussian distributiorf( Ay, By |Ao).
This approximation is supported by our simulation results.
Defining the random vectox,, = [4,,, B,,|? and lettingz,,

be the observed instance &f, yields,
(=3 (Xn—pn) T8 (X —pin))

f(XnlAo) = (3)

(2m)2 |2, ]

wherep,, andy,, are given by,

M — [ HAn — [An|AO]
" | 1B E[Bn|Ao]
s _ | % oABn
" |l OAB.n JB n

B var(A,|Ao) cov(A,,, Bn|Ap)
- | cov(An, Br|Ao) var(By,|Ao)
From (1) and (2) it follows that,
{ fan ] _ { 1 Plp } { HAn—1 }
UB.n P, 1 HBn—1
il ]
Pg4 1 HKB,0

i=1

Similar derivations were carried out for the covariance ma-
trix, details can be found in [9]. Combining the results

gives,
HAn KA,
UB.n n KB,0 (4
0—124,n = H G; 0—12470 =H, |: L ’ :| (4)
B i=1 012370 B,0
OABn 0AB,0
where eacltz; is given by,
1 Pig 0 0 0
Py, 1 0 0 0
i i i \2 i
_ 07_ PipPip _1 ) (P;XB) 2PAB
BalBa 0 (Pha) 1 2Pp,
0 0 Ppa Pip  (1+PipPga)

Note thatG; depends only on the efficiencies at cyglée.
Pi 5, Pk . The second equation 4 follows since givég,
0%0=0%o = 0apo = 0, and soH, is the matrix formed
by taking the first two columns df[;"_, G;. Also givenA,,
a0 = Ao andup o is either4y or 0. This implies,

HTLA07
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whereH,, = [hy hy hs hy hs)T is a vector, equal to the sum
of the first two columns of{,, if Aq = By and equal to the
first column ofH,, if By = 0. Thus,

h
Hn = l: hl :|A0 My Ag (5)
2
hg ilg,
¥, = =7 22 Ay = K, A,
L R O

wherem,, and K,, depend only on the efficiencies. Since
both the mean and variance df, and B,, are linear in

Ay, the variance relative to the mean remains constant with
varying Ag. Thus for large values aofly, the range of val-
ues ofA,,, B, relative to the size of the meap{ ., 5.n)
decreases. This is emphasized by considering the logarithm
of the values as in Fig. 1.

3. ESTIMATION

In this section we shall derive the MAP estimator 4§
given A,, and B,,. Based on the model in section 2 the esti-
mator is given by

Ao argmax f(X,[Ay = ao)

argrréin (—In f(Xn|Ao = ao))
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Fig. 1. Distribution of A, and By given Ao, with By = 0, Fig. 2. Contour map oflog,,(Ao) againstAsyg, By with
Pip =0.7, P54 = 0.6. E[A19, B1o|Ao] for different val- Pip=0.7andPh, = 0.6 fori = {1,2,...20}.
ues of A lie along the dotted line. The ellipses around the

expectations show the positions whefied o, Bio|4o) > o o )
¢—1000 |t is reasonable to assume that all data generatedth's line from the origin. To validate the accuracy of the

for a particular4, lies well inside its ellipse. estimator, we illustrate its relative errpdy — Ag|/Ap in
Fig. 3. The relative error decreases willj (as would be

expected from inspection of Fig. 1).
Substituting (5) and (6) into (3) yields, To get some intuition about this estimation, assume that
(mIK, tm,) (2l K 12,) > 1, then,
—In f(z,]A40)

X 2 A 2T Ky,
= 5 I((2m)?|Kn]) + In(Ao) + Ao~ \/J

L

1 T -—1
m(xn —mpAo)” K, (zn —myAo) _ A x,j:Er_zlxn
1 2 an Ky HES b
= 5ln((27r) |Ky|) + In(Ap) + 5 A
0
- Ao 1o Note thaty/2T%, 'z, is a measure of the length af,
—, K my + 7mnKn Mn scaled appropriately to account for the covariance, similarly

1 .
Since the first and fourth terms do not dependen \ #n Xn i 18 @ measure of the length pf, (E[X,|4o))-

For an accurate approximatiod{ ~ 4,) we want
ry K e, Ao T pr—1 T y—1
T+ My, B My xNEN TN

Ay = arg Ir}llion {ln(Ao) + 5 Aq 5

are—.T ~ 1. )]
. L HNEN BN
For the values of interest, the expression in square brack- ) ] o
ets is a convex function imly. The maximum likelihood The operation of the estimator can be thought of as finding
estimate ofA, is the valued,, which minimizes this ex- Ay such that the ratio in (7) is as close to unity as possible.
pression.A, is given by,
4. LINEAR COMBINATIONS OF AMPLICONS

11+ (MK ) (T Ky ) _

Ay = — , In many practical casesl,, andB,, are not both observable,
my, Kn'“my rather some linear combination of them can be observed.

Examples of this combination include the sumAf and

where (7) follows sinced, is strictly positive. Thus_given B, (intercalator dyes [5]) or just one of the two (fluorogenic
the observed values of,, = [A,,, B,,]?, the MAP estimate reporters|6]).

of Aq is obtained by evaluating the expression given in (7). In general, consider the random varialsle which is the
A graphic of the estimator is shown in Fig. 2. From Fig. 1 ;022 combination oft,., B, given by.
it is evident that the area of greatest interest lies close to the o ’
mean line A, is approximately linear in the distance along C, =aA, + (B,,
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Fig. 3. Mean (with 1 standard deviation error-bars) of the
absolute relative errof|(Ao — Ao)/Ao|) using our esti-

derivation is based on the stochastic progression of the am-
plicons. We assume that the end-point concentrations are
well approximated by a joint Gaussian distribution. The
estimator finds the closest mean in the sense of the ratio
in equation (7) rather than finding the closest point on the
‘mean line’ (the dotted line in Fig. 1) in a least squares
sense. The estimator, effectively tries to choose an estimate
that makes the ‘length’ of the observed vector as close to the
length of the average vector as possible.

In many practical cases, only a linear combination of the
end-point concentrations can be observed. Based on this
fact we also provide an extension for the estimator which
can be applied to various quantitative PCR assays and de-
tection methods. This feature makes the estimation method
applicable to a variety of PCR detection techniques, such
as fluorogenic probes [6], or intercalator dye [5], The meth-
ods presented in this paper can also be implemented in the

mation method and the observed concentrations after cycledesign of accurate PCR assays, such as medical diagnostic

20. Equations (1) and (2) were used witfi ; = 0.7 and
P} 4 = 0.6 for each.

wherea > 0 and3 > 0. Note that conditioned onl,

A, andB,, are assumed jointly Gaussian and so any linear
combination of them,,) is a Gaussian random variable,
with,

HCn QLA R + 5,U/B,n = ’YTLAO
2 2 _2 2 2 _ 2
Ocmn = QO0apn + ﬂ OBn =+ 20‘60143," - TnAOa
where~,, andr, can be calculated directly from the am-

plification efficiencies. Following the same procedure as in
section 3 with observatior}, as a sample of’,, yields,

2 4 2.2
_ —Tn + Tn + 4’7ncn
Ay = .

272

Again, to gain some intuition about this estimator, assume
that 3= > 1 (this approximation is supported by simula-
tion results) then

Cn

N c
Ag = = = Ag
Tn

HCon

The operation of the estimator can be thought of as finding
Ay such that the ratio of,, to uc, is as close to unity as
possible.

5. CONCLUSION

A maximum a posterioffMAP) estimator for polymerase

chain reaction (PCR) assays is presented. The estimator re-

lies on the replication efficiencies of the PCR assay and the
observed end-point concentration of the PCR product. This

applications, where estimation performance is significant.
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