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ABSTRACT

A maximum a posteriori(MAP) estimator for polymerase
chain reaction (PCR) assays is presented. The estimation re-
lies on the replication efficiencies of the PCR assay and the
observed end-point concentration of the PCR product at an
arbitrary cycle. This derivation is carried out in view of the
stochastic progression of the amplicons, and the assumption
that the end-point concentrations for any particular initial
value have a jointly Gaussian distribution. In addition, we
provide an extension for the estimator which can be applied
to various quantitative PCR assays.

1. INTRODUCTION

Amplification and quantification of specific sequences of
DNA molecules has become an essential part of many molec-
ular biology procedures and experiments. The original num-
ber of target nucleic acid molecules present in a typical
sample is usually minuscule, making it practically unde-
tectable via any direct means. Thus nucleic acid amplifi-
cation is necessary in different areas of research, diagnos-
tics and forensic sciences. Currently various techniques for
nucleic acid amplification or quantification are available;
yet, an enzymatic amplification methodology which uses
temperature cycling, known as polymerase chain reaction
(PCR) [1], is by far the most common. Each PCR cycle
in theory, should double the number of target DNA strands;
yet in practice, PCR shows lower efficiencies (defined as the
probability of successful replication of individual strands).

There have been some attempts to model the stochas-
tic process of PCR [2, 3] – all models assign a replication
probability to individual DNA strands, which can be consid-
ered constant within early and mid cycles of PCR (typically
the first 20-25 cycles). Hence, estimation of the initial val-
ues of the DNA strands, based on the observed quantities,
calls for insight into the probability distribution of the PCR
amplicons (i.e. amplified strands). In practice, competitive
PCR methods [4] try to address this challenge by amplifying
additional samples with a known quantity of analogous nu-
cleic acid molecules (control samples) along with the target
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sample. In these techniques quantification by comparison
is carried out, assuming that the control and the target have
matching efficiencies. In addition, existing methods of PCR
detection use different reporter molecules (e.g. fluorogenic
probes [5]); thus in principle, each method detects certain
aspects of amplification.

Typically in quantitative PCR assays, we observe the
quantities of the amplified strands or a combination of them,
from which we need toestimatethe initial nucleic acid quan-
tities. In this paper, we model the quantities at each cycle as
random variables with statistics depending on the values of
the previous cycle and the amplification efficiencies. Based
on this model, we attempt to derive the best estimate of the
initial DNA concentrations in view of the observable ampli-
cons. In Section 2, we present the basic model and in sec-
tion 3 we give the solution to the estimation problem, using
only the approximation that the observed amplicons have a
Gaussian distribution given the initial concentrations. We
present the solution for the case where a linear combination
of the amplicons is observed in section 4 which is applicable
to most PCR detection methods.

2. AMPLIFICATION MODEL

Let A0 and B0 be the initial concentrations of the com-
plementary strands of the target DNA, and letAi andBi

be the corresponding concentrations following cyclei of
PCR. Note that during cyclei, each single strand of type
B produces a single strand of typeA with probabilityP i

AB

(a complete analysis of the probabilitiesP i
AB , P i

BA is pro-
vided in [3]). In cyclei, the concentration of typeA strands
increases byU i

AB , similarly the concentration of typeB
strands increases byU i

BA, thus,

Ai = Ai−1 + U i
AB

Bi = Bi−1 + U i
BA, (1)

where,

U i
AB ∼ Binom(P i

AB , Bi−1)
U i

BA ∼ Binom(P i
BA, Ai−1). (2)



U i
AB has a binomial distributions since it is the sum ofBi−1

independent Bernoulli random trials each with success prob-
ability P i

AB [7]. A similar argument follows forU i
BA.

The goal of a typical quantitative PCR assay is toesti-
mateA0 andB0 givenAn andBn. From the experimental
setup, we know that eitherA0 = B0, or B0 = 0, and so in
both cases it suffices to estimateA0. From estimation the-
ory we know that the best estimator ofA0 is themaximum
a posteriori(MAP) estimator [8], given byÂ0;

Â0 = arg max
a0

P (A0 = a0|An, Bn)

Usually we have no prior knowledge aboutA0 except that
it lies within a certain range, and so we assume a uniform
prior onA0 over its range. Although not presented here, it is
straightforward to extend this analysis to the case where the
prior distribution is not uniform but is known. Using Bayes’
rule,

P (A0|An, Bn) =
P (An, Bn|A0)P (A0)

P (An, Bn)

⇒ Â0 = arg max
a0

P (An, Bn|A0 = a0)

An andBn are strictly integers, however even for smalln
(n ≥ 5), An andBn are generally quite large (greater than
100) and the distribution ofAN , BN |A0 can be well approx-
imated by a joint Gaussian distribution,f(AN , BN |A0).
This approximation is supported by our simulation results.
Defining the random vectorXn = [An, Bn]T and lettingxn

be the observed instance ofXn yields,

f(Xn|A0) =
1√

(2π)2|Σn|
e(− 1

2 (Xn−µn)T Σ−1
n (Xn−µn)) (3)

whereµn andΣn are given by,

µn =
[

µA,n

µB,n

]
=

[
E[An|A0]
E[Bn|A0]

]

Σn =
[

σ2
A,n σAB,n

σAB,n σ2
B,n

]

=
[

var(An|A0) cov(An, Bn|A0)
cov(An, Bn|A0) var(Bn|A0)

]

From (1) and (2) it follows that,

[
µA,n

µB,n

]
=

[
1 Pn

AB

Pn
BA 1

] [
µA,n−1

µB,n−1

]

=
n∏

i=1

[
1 P i

AB

P i
BA 1

] [
µA,0

µB,0

]

Similar derivations were carried out for the covariance ma-
trix, details can be found in [9]. Combining the results

gives,




µA,n

µB,n

σ2
A,n

σ2
B,n

σAB,n




=
n∏

i=1

Gi




µA,0

µB,0

σ2
A,0

σ2
B,0

σAB,0




= Hn

[
µA,0

µB,0

]
(4)

where eachGi is given by,




1 P i
AB 0 0 0

P i
BA 1 0 0 0
0 P i

ABP̄ i
AB 1

(
P i

AB

)2 2P i
AB

P i
BAP̄ i

BA 0
(
P i

BA

)2 1 2P i
BA

0 0 P i
BA P i

AB (1 + P i
ABP i

BA)




Note thatGi depends only on the efficiencies at cyclei, i.e.
P i

AB , P i
BA. The second equation 4 follows since givenA0,

σ2
A,0 = σ2

B,0 = σAB,0 = 0, and soHn is the matrix formed
by taking the first two columns of

∏n
i=1 Gi. Also givenA0,

µA,0 = A0 andµB,0 is eitherA0 or 0. This implies,

[
µA,n µB,n σ2

A,n σ2
B,n σAB,n

]T
= H̃nA0,

whereH̃n = [h̃1 h̃2 h̃3 h̃4 h̃5]T is a vector, equal to the sum
of the first two columns ofHn if A0 = B0 and equal to the
first column ofHn if B0 = 0. Thus,

µn =
[

h̃1

h̃2

]
A0 = mnA0 (5)

Σn =
[

h̃3 h̃5

h̃5 h̃4

]
A0 = KnA0, (6)

wheremn andKn depend only on the efficiencies. Since
both the mean and variance ofAn and Bn are linear in
A0, the variance relative to the mean remains constant with
varyingA0. Thus for large values ofA0, the range of val-
ues ofAn, Bn relative to the size of the mean (µA,n, µB,n)
decreases. This is emphasized by considering the logarithm
of the values as in Fig. 1.

3. ESTIMATION

In this section we shall derive the MAP estimator ofA0

givenAn andBn. Based on the model in section 2 the esti-
mator is given by

Â0 ≈ arg max
a0

f(Xn|A0 = a0)

= arg min
a0

(− ln f(Xn|A0 = a0))
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Fig. 1. Distribution ofA10 andB10 givenA0, with B0 = 0,
P i

AB = 0.7, P i
BA = 0.6. E[A10, B10|A0] for different val-

ues ofA0 lie along the dotted line. The ellipses around the
expectations show the positions wheref(A10, B10|A0) >
e−1000. It is reasonable to assume that all data generated
for a particularA0 lies well inside its ellipse.

Substituting (5) and (6) into (3) yields,

− ln f(xn|A0)

=
1
2

ln((2π)2|Kn|) + ln(A0) +

1
2A0

(xn −mnA0)T K−1
n (xn −mnA0)

=
1
2

ln((2π)2|Kn|) + ln(A0) +
xT

nK−1
n xn

2A0

−xT
nK−1

n mn +
A0

2
mT

nK−1
n mn

Since the first and fourth terms do not depend onA0,

Â0 = arg min
A0

[
ln(A0) +

xT
nK−1

n xn

2A0
+

A0

2
mT

nK−1
n mn

]

For the values of interest, the expression in square brack-
ets is a convex function inA0. The maximum likelihood
estimate ofA0 is the valueÂ0, which minimizes this ex-
pression.Â0 is given by,

Â0 =
−1 +

√
1 + (mT

nK−1
n mn)(xT

nK−1
n xn)

mT
nK−1

n mn

,

where (7) follows sincêA0 is strictly positive. Thus given
the observed values ofXn = [An, Bn]T , the MAP estimate
of A0 is obtained by evaluating the expression given in (7).
A graphic of the estimator is shown in Fig. 2. From Fig. 1
it is evident that the area of greatest interest lies close to the
mean line,Â0 is approximately linear in the distance along
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Fig. 2. Contour map oflog10(Â0) againstA20, B20 with
P i

AB = 0.7 andP i
BA = 0.6 for i = {1, 2, . . . 20}.

this line from the origin. To validate the accuracy of the
estimator, we illustrate its relative error|A0 − Â0|/A0 in
Fig. 3. The relative error decreases withA0 (as would be
expected from inspection of Fig. 1).
To get some intuition about this estimation, assume that
(mT

nK−1
n mn)(xT

nK−1
n xn) À 1, then,

Â0 ≈
√

xT
nK−1

n xn

mT
nK−1

n mn

= A0

√
xT

nΣ−1
n xn

µT
nΣ−1

n µn

Note that
√

xT
nΣ−1

n xn is a measure of the length ofxn

scaled appropriately to account for the covariance, similarly√
µT

nΣ−1
n µn is a measure of the length ofµn (E[Xn|A0]).

For an accurate approximation (Â0 ≈ A0) we want

xT
NΣ−1

N xN

µT
NΣ−1

N µN

≈ 1. (7)

The operation of the estimator can be thought of as finding
Â0 such that the ratio in (7) is as close to unity as possible.

4. LINEAR COMBINATIONS OF AMPLICONS

In many practical cases,An andBn are not both observable,
rather some linear combination of them can be observed.
Examples of this combination include the sum ofAn and
Bn (intercalator dyes [5]) or just one of the two (fluorogenic
reporters[6]).
In general, consider the random variableCn which is the
linear combination ofAn, Bn given by,

Cn = αAn + βBn,
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Fig. 3. Mean (with 1 standard deviation error-bars) of the
absolute relative error(|(A0 − Â0)/A0|) using our esti-
mation method and the observed concentrations after cycle
20. Equations (1) and (2) were used withP i

AB = 0.7 and
P i

BA = 0.6 for eachi.

whereα ≥ 0 andβ ≥ 0. Note that conditioned onA0,
An andBn are assumed jointly Gaussian and so any linear
combination of them (Cn) is a Gaussian random variable,
with,

µC,n = αµA,n + βµB,n = γnA0

σ2
C,n = α2σ2

A,n + β2σ2
B,n + 2αβσAB,n = τ2

nA0,

whereγn and τn can be calculated directly from the am-
plification efficiencies. Following the same procedure as in
section 3 with observationcn as a sample ofCn, yields,

Â0 =
−τ2

n +
√

τ4
n + 4γ2

nc2
n

2γ2
n

.

Again, to gain some intuition about this estimator, assume
that cnγn

τ2
n
À 1 (this approximation is supported by simula-

tion results) then

Â0 ≈ cn

γn
= A0

cn

µC,n

The operation of the estimator can be thought of as finding
Â0 such that the ratio ofcn to µC,n is as close to unity as
possible.

5. CONCLUSION

A maximum a posteriori(MAP) estimator for polymerase
chain reaction (PCR) assays is presented. The estimator re-
lies on the replication efficiencies of the PCR assay and the
observed end-point concentration of the PCR product. This

derivation is based on the stochastic progression of the am-
plicons. We assume that the end-point concentrations are
well approximated by a joint Gaussian distribution. The
estimator finds the closest mean in the sense of the ratio
in equation (7) rather than finding the closest point on the
‘mean line’ (the dotted line in Fig. 1) in a least squares
sense. The estimator, effectively tries to choose an estimate
that makes the ‘length’ of the observed vector as close to the
length of the average vector as possible.
In many practical cases, only a linear combination of the
end-point concentrations can be observed. Based on this
fact we also provide an extension for the estimator which
can be applied to various quantitative PCR assays and de-
tection methods. This feature makes the estimation method
applicable to a variety of PCR detection techniques, such
as fluorogenic probes [6], or intercalator dye [5], The meth-
ods presented in this paper can also be implemented in the
design of accurate PCR assays, such as medical diagnostic
applications, where estimation performance is significant.
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