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Abstract� This paper presents a stochastic model for the 

observed signal of biosensors, a model that predicts the signal 
fluctuation of the system and the SNR associated with it using a 
Markov chain process. In the process, transition probabilities 
are derived from the target and probe binding kinetics in view 
of statistical motion and random walk events. Based on this 
model, we are able to estimate the settling time, power-spectral 
density (PSD), and signal to noise ratio (SNR) of general 
affinity-based biosensors. The effects of scaling from 
macroscopic to microscopic regimes are also studied, which 
indicate a fundamental tradeoff between settling time (speed) 
and signal fluctuation (noise). The model is also applied to 
analyze the behavior of a DNA hybridization electronic 
detector1. 
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I.  INTRODUCTION 
 
 Sensors by definition are devices that respond to a 
physical stimulus, such as thermal, electromagnetic, or 
mechanical energy by producing a signal, usually of 
electrical nature. The quantities that conventional sensors 
measure typically corresponds to various macroscopic 
definitions of matter and energy (e.g. pressure, conductance, 
temperature, etc.); yet without an exception, independent of 
the application or the sensing mechanism, the detectable 
signal in all of the existing sensory systems is generated by 
the aggregate contribution of individual incidents (e.g. 
collision, absorption, emission, etc.), originating from 
probabilistic microscopic systems. When such systems are 
isomorphically reduced in size, i.e. scaled down with all 
dimensions of the system decreased uniformly, the changes 
in length, area, volume ratios and number of microscopic 
detectable particles alter the performance of the detection 
[1]. With the current trend towards the implementation of 
small-scale micro-fabricated electrochemical and biological 
sensors [2], a comprehensive understanding and statistical 
model of the observed signal and the uncertainty associated 
with it in terms of signal to noise ratio (SNR) has become 
more essential.   

In this paper, we investigate the intrinsic signal 
fluctuation of affinity-based biosensors with emphasis on 
effects of excessive scaling. The unique feature of scaled 
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down biological and chemical sensors compared to other 
types of traditional sensors is their high susceptibility to 
signal fluctuation. This is mainly due to the relatively large 
physical dimensions of the particles (e.g. large polymer 
molecules, proteins, nucleic acids, cells, etc.) compared to 
the micro- and nano-fabricated sensing elements. This 
characteristic potentially drives the biosensors well into the 
mesoscopic regimes, where little statistical signal averaging 
is present. It is imperative to understand that the overall 
fidelity of the sensor is not only a function of the intrinsic 
signal fluctuation, but also the specificity of the recognition 
entities (e.g. specificity of DNA probes in Microarrays [3]); 
nonetheless, we analytically show that independent of their 
relative contribution, the inherent signal fluctuation 
eventually dictates the measurement�s uncertainty in 
excessively-scaled sensory systems.  

To fully explore the effects of signal fluctuation on the 
SNR of biosensors, we introduce a Markov chain stochastic 
model for the affinity-based biosensors in Section II. This 
model takes into account the biochemical reaction kinetics 
and each particle�s diffusion and drift processes. In Section 
III, we derive the closed-from solutions of the sensor�s 
settling time as well as the observed signal power spectral 
density (PSD), which demonstrates the tradeoff between the 
response time (speed) and SNR (noise). In Section IV, as a 
practical example, we implement the derived model to 
examine the behavior of an ISFET device for electronic 
detection of DNA hybridization [4]. The presented model in 
this paper not only introduces a detection limitation for 
biosensors, but also provides design-oriented insight into the 
fabrication of low-noise micro- and nano-scaled transducers.   
 
 

II. MODEL 
 
 The aim of a biosensor is to produce either discrete or 
continuous electronic signals which are correlated to the 
presence or concentration level of a single analyte or a group 
of analytes (i.e. target species). These sensory systems take 
advantage of the selectivity of various bimolecular 
interactions (e.g. antibody-antigen affinity). The processes 
which govern the microscopic interaction between such 
molecule pairs are probabilistic and founded on statistical 
mechanics. Microscopically speaking, for such reactions to 
occur, the molecules have to collide (i.e. have intimate 
proximity), and then react prior to moving away. To better 
understand the behavior of biosensors, it is necessary to 
characterize their probabilistic motion in view of 
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interactions. In the following, we present a stochastic model 
for both processes.  
 
A.  Molecular-Level Motion  
 

Molecules immersed in the aqueous reaction chambers 
of biosensors are subject to thermal-fluctuation and perhaps 
on certain sensory platforms to electromagnetic or 
mechanical forces [5]. While mechanical movement (e.g. 
convection) and electromagnetic forces (e.g. 
electrophoresis) are deterministic, thermal fluctuation 
movement is not. Thermal fluctuation of a particle from a 
microscopic point of view follows the characteristics of 
typical random walk process (i.e. Brownian motion), which 
transpire into a diffusive spreading in macroscopic systems. 
 Statistically following the motion of molecules in the 
general case is challenging; yet, we can apply a Markov 
chain process [6] to model the particle motion within the 
reaction chamber (Fig.1). In this model, each state of the 
chain corresponds to a set of fixed coordinates within the 
reaction chamber. The transition probabilities are 
subsequently defined as probability of molecules moving 
from each coordinate to the next.  Hence, for the target 
molecule X , with diffusion coefficient D  and position 

)(tx  at time t , the transition probability between two 
adjacent coordinate pairs (states) i  and 1+i  with distance 

x∆ , in time interval t∆ , defined by iim ,1+  is 
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where ),1( ii +υ  is the contribution of drift and convection. 
The transition matrix NNRM ×∈   ( N number of states), 
can then be applied to find the probability distribution of the 
system NRtx ∈)(  at an arbitrary time t , given initial 
distribution of )0(x [6]. If M  has an eigenvalue equal to 
one, then the system has an equilibrium distribution given 
that all other eigenvalues are less than or equal to one.  

 
B.   Interaction  
 

Molecular collision results in different possible 
outcomes (reactive, elastic, and inelastic collision [7]), 
hence we can use a probabilistic model to predict the 
specific binding of target X molecule to Y  molecules. 

 Assume that molecule Y  is confined within a specific 
coordinate (e.g. state zero in Fig.1), then meaningful 
reactions only occur when 0)( =tx  (i.e. molecule X  is in 
intimate proximity of Y ). If the bulk-phase reaction 
between these species has the association rate 1k , and 
disassociation rate of 1−k , such that (symbol [ ] indicates 
concentration) 
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we can apply the following approximation to find the 
transition probabilities between captured state c , and 
collided state 0. 

tkm
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The physical justification for (3) comes from the fact that in 
the saturation concentration of Y , defined by ][ mY , the 
system ensures that all X  molecules are effectively in close 
proximity of a Y  molecule, a condition which  is similar to  
when 0)( =tx . Hence, for 0)( =tx  in biosensors and 

][ mY  in bulk-phase reaction, we expect the same reaction 
kinetics, 1−k  and ][1 mYk .  
 Now based on (3) we can derive the new transition 
matrix )1()1( +×+∈ NNRM , which also includes molecular 
binding at the surface as a new state. It is imperative to 
understand that although the example illustrated in Fig.1 is 
one-dimensional, our derivations are generally applicable to 
multi-dimensional systems with more complicated boundary 
conditions. 
 
 

III. STOCHASTIC ANALYSIS 
 
A.  Equilibrium and Settling Time 
  
 Most biosensors quantify the amount of captured 
molecules in chemical equilibrium, which is commonly 
independent of the initial condition of the system. 
Depending on the assay procedure, these systems can 
observe either a single sample of biochemical process (e.g. 
Microarrays or ELISA based Immunoassays [8]) or ongoing 
chemical reactions (e.g. ISFET-based biosensors). As 
mentioned in the previous section, the steady state 
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 Fig. 1.  Markov chain model of a one-dimensional affinity-

based biosensor. Different states corresponds to different 
locations within the reaction chamber.  
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distribution ρ , can be derived by analyzing the eigenvalues 
and eigenvectors of the homogenous transition matrix. If the 
stability criteria exists, the equilibrium distribution of n  
molecules simply becomes ρ×n .  
 The next quantity which we need to evaluate is the 
necessary time for the system to reach chemical equilibrium. 
This parameter is in fact a function of system dynamics in 
view of the initial condition; yet a pessimistic approximation 
for the worst-case time constant of the system Tτ  can be 
obtained by simply adding all time constants associated with 
all N eigenvalues which are less than one. This is similar to 
the same approach as the open circuit time constant method 
in linear circuits [9] along with its deficiencies. The closed-
form expression for Tτ  can be analytically derived for the 
one-dimensional system in Fig.1 as 
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where xNL ∆×=  is the actual dimension of the reaction 
chamber. It can also be shown that the settling time 
approximation has always a component proportional to the 
reaction chamber size (i.e. length, area and volume for one, 
two, and three-dimensions respectively). Equation (4) also 
indicates that the settling time has a component inversely 
proportional to the intrinsic kinetic rates of the reaction and 
the diffusion coefficient.     
 
B.  Signal Power Spectral Density 
 
In order to find the power spectral density of the observed 
signal, we need to evaluate the autocorrelation function of 
X  being in state c .  For this purpose we initially derive the 

transition probabilities between state 0 and c  (the relevant 
states for detection in equilibrium), summarized by the 
following two-state transition matrix 
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where 1

�k = )1/(][ 01 cmYk ρρ − . 0ρ  and cρ   are the 
steady state distribution probabilities of state 0 and c  
derived from ρ , respectively. Next, we calculate the 
closed-form autocorrelation function for state c , ( )τCR , 
from the correlation matrix as 
 
 

( ) [ ]τβατ ×+−+= − )�(exp 11 kkRC .            (6) 
 
 

The values of α  and β  are )�/( 111 −− + kkkcρ  and 
)�/(�

111 −+ kkkcρ  respectively. Now, we can determine the 
Fourier transform of (6) to find the power spectral density 

( )ωCS , which has the Lorentzian profile. 
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C.  SNR 
 
 The overall noise power in a single measurement 2

Sσ , 
is equal to )1( cc ρρ − ; hence for a system consisting of n  
independent particles and transducer noise power of 2

Tσ , 
we have  
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IV. IMPLEMENTATION  
 
 Now as an example, we analyze the stochastic 
characteristics of an ISFET device for electronic detection of 
DNA hybridization. The structure of this specific biosensor 
consists of a planar field-effect sensing element at the 
bottom of the cubic reaction chamber with dimensions L   
[4]. The sensor responds to the surface potential changes 
which arise from the selective binding of charged molecules 
to the surface (e.g. DNA molecules bind to complementary 
probes). In this platform, diffusion is the only source of 
molecular motion. The diffusion coefficient of the target 
molecule, a single strand 20 base-pair DNA, defined by tD , 
was estimated to be 1.5×10-6cm2/s, whereas ][X  is set to be 
0.1nM (≈ 6×1011 molecules/cm3). The reaction rates as well 
as the simulation specifications are mentioned in Table I.  

 
As shown in Fig.2a, the settling time approximation 

calculated from (4) gives a reasonable upper and lower 
bound for the transient responses of the system. The 
responses within these boundaries correspond to the 
progression of captured state probability toward its 
asymptotic value, given different random initial 
distributions.  The size of the reaction chamber here is 
103µm3. In Fig.2b, we show the effects of isomorphical 

  TABLE I 
DNA HYBRIDIZATION SENSOR SPECIFICATIONS 

 
Quantity Value 

DNA diffusion coefficient ( tD ) 1.5×10-6cm2/s 

DNA concentration ( ][X ) 0.1nM 

Forward binding rate ( 1k ) 3×107M-1s-1 

Reverse rate ( 1−k ) 5s-1 

Probe saturation concentration ( ][ mY ) 1µM 

Transduction noise Power ( 2
Tσ ) 1Molecule2 

Simulation lattice size ( x∆ ) 60nm 

Simulation time increment ( t∆ ) 4.7µs 



 4 of 4

scaling on the PSD profile of the captured DNA molecules. 
As the size of the chamber and the number of molecules 
become larger, the noise power grows, but the 3dB 

bandwidth remains constant. Ultimately in Fig.2c, for the 
same scaling regime as in Fig.2b, SNR vs. settling time is 
plotted which shows the fundamental tradeoff between noise 
and speed of biosensors.   
 
 

V.  CONCLUSION 
 

The observed signal in affinity-based biosensor is a function 
of captured molecules by the recognition sites. The 
probabilistic motion and interaction of molecules results in a 
random signal fluctuation (noise) which is generally 
observed in addition to the transducer noise. We have shown 
that this noise component has a Lorentzian power spectral 
density and its amplitude is proportional to the target 
concentration. The observed signal to noise ratio of these 
systems also decreases as the system is isomorphically 
scaled down, while the system�s speed increases. The 
methods presented in this paper, can be applied to the design 
of various sensory systems, specifically low-noise 
biochemical detectors with micro and nano-scaled 
transducer structures. Based on these models, one can also 
derive a variety of estimation techniques to better detect 
analytes in biosensors [10]. 
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(a) 
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(c) 
Fig. 2.  Simulation results of a biosensor for DNA hybridization 

detection. In (a), the settling time of 10 random initial distributions 
is compared to the estimated worst-case settling time in (4). In (b), 
the power spectral density in view of isomorphical scaling of the 

detector is plotted. The plot in (c) shows the tradeoff between 
system settling time (speed) and SNR. 


