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Abstract—Microarray technology relies on the hybridization The detection problem is posed as the maximum likelihood

process, which is stochastic in nature. However, current measure- gptimization. Preliminary simulation results that we present

ment and detection techniques do not fully exploit this stochastic jjicate significant improvement over direct readout.
nature nor do they consider it in data analysis. In this paper,

we propose a probabilistic model of the DNA microarray and 11. MODEL
employ this model for optimal estimation of gene expression

. _ L
levels. Simulation results indicate significant improvement in the V& consider anm x m microarray, withm= types of
reliability of the estimates over the direct readout of the data.  oligonucleotide probes attached to its surface. A total of

N molecules ofn different types of cDNA targets, with
|. INTRODUCTION concentrationsey, ca, . .., ¢y, .1y ¢; = N, are applied to

Recently, high-throughput assay technologies have gairf@§ microarray. Our goal is to estimatgs from a scanned
much attention in the genomic research community. DNKNage of the array that gives information about the location
microarrays, in particular, have attracted much interest due@Bd number of hybridized and cross-hybridized probes. The
the large scale, parallel nature of the experiments, and m@asure'ment'ls taken after the system reaches equilibrium.
richness of the information that they provide. This stands FOr simplicity, assume that each cDNA fragment may
in contrast to traditional techniques capable of analyzifyPridize to only one of the oligonucleotide probes, while it
only a small number of genes at a time. DNA microarray&2y €ngage ik non-specific bindings (cross-hybrldlzgtlons).
[1] are primarily used to measure gene expression |evelg1,ffu5|on movement of the unbound cDNA moleculles_|s moq-
i.e., the transcription of the DNA data into messenger RNgjed as a random Wa_lk accross the array, and their distribution
molecules (MRNA). DNA microarray technology is based off @ssumed to be uniform on the array [4].
hybridization, a process in which complementary DNA strands
specifically bind to each other. Typically, the surface of a DNA D 1p
microarray contains a grid of different single stranded DNA '
oligonucleotide probes, whose locations are fixed during the
process of hybridization and detection. The target mRNA that
needs to be detected is first used to generate fluorescent labeled
cDNA which is then applied to the microarray. The labeled
cDNA molecules that are a perfect match to the mic:roarrayl_p C
probes bind to the complementary oligos. However, there will
be a number of non-specific bindings since cDNA may cross-
hybridize to probes that are not a perfect match but rather only
partial complements.

. There ha§ been a 'Qt of worl_< on employing statistical anal}fi’ . 1. Markov chain modeling states of a target molecule on a
sis tools for interpretation of microarray measurements (see [Rtroarray with one specific and k = 2 non-specific binding sites. The
and the references therein). In this paper, we are interestedbpyidized state is denoted by 'H', cross-hybridized states are denoted
a more fundamental problem — the one of optimal estimati@y " the unbound state is denoted by N
of the gene expressions. The number of hybridized moleculed et «; denote the number of unbound molecules of type
varies due to the probabilistic nature of the hybridizatiorn.= 1,...,n. A cDNA in a close proximity to its matching
This noise is Poisson-like at high expression levels, and mgmobe oligonucleotide will hybridize with probability; ;.
complex at low expression levels where non-specific bindificherefore, a fraction of the unbound targets of typhat is
becomes more significant [3]. We describe hybridization aring captured is;;pr ;/m?. This fraction is constant at the
cross-hybridization processes by Markov chains, similar eguilibrium; however, at a given time instant, any particular
the techniques used in modeling affinity based sensorsnwlecule may be in a captured or in a released state. Therefore,
[4]. Using the stationary distribution of the Markov chainsthe probability that a particular unbound target is going to be
we formulate a statistical model of the microarray readoutaptured by its matching probe jig ; = py;/m?. Similarly,
The biological noise is modeled as the shot noise thus dbe probability that any particular target cDNA will cross-
counting for the inherent fluctuations of the measured signalbridize is p.; = pc./m?. The probability that a target




is released is denoted by,. [For simplicity, we assume

that all cross-hybridizations are equally likely and that thé/e further assume that the fluctuations are Gaussian, i.e., each
probability of release is the same for both specific and noentry of w has Gaussian distributiok’(0, 02 ). Finally, v in
specific binding.] The Markov chain that models transition€l) is them? x 1 vector whose components can practically
between possible states of a target with one specifidiaad be assumed to have iid Gaussian distributigit0, o%), and
non-specific binding sites is shown in Figure 1. The probabilitgpresent the noise due to imperfect instrumentation and other
p, = 1 — kp. — py, in Figure 1 denotes the likelihood that arbiochemistry independent noise sources.

unbound target remains free. [Il. OPTIMAL ESTIMATION OF GENE EXPRESSIONLEVELS

Let p; = [wi1 Mi2 ... Mikt2)’ be a vector whose . i : :
components are fractions of the total number of the targets of! € maximum-likelihood (ML) estimate of the input con-

typei that are in one of thé + 2 states of the Markov chain in c€ntrations maximizes the probabiligys|c), and is given by
Figure 1. In particular, let; ; denote the number of hybridized e=Q ls. (2)

moleculesy; ;, j = 2,...,k+1, denote the numbers of cross- ) )

hybridized molecules in each of the non-specific binding As an example, we simulate a# x 8 microarray, and
sites, and lej; ;42 be the number of unbound molecules. Impply n = 6 types of cDNA targets. Furthermore, =

equilibrium, we are interested in finding the components 9fn000, 20000, 20000, 20000, 10000, 20000], and thus the total

the vectoru; such thatu; = Pip;, 171 = c;, and thus number of target molecules & = 100000. The probability
0 1—pr ... 0 Pn of hybridization of a cDNA target to the matching probe is

r—p 1" - : . . . assumed to bey = 0.8, while the probability of cross-
= [ 17 ] 1o P = 0 "y I hybridization to any one of = 3 other probes is assumed
s o o to be pc = 0.1. The probabilities of release from both the

hybridized and the cross-hybridized states for all targets are
where ()" denotes a pseudoinverse. pr = 0.02. The simulations are run sufficiently long so that
Every state in the Markov chain for the typetarget the steady-states of the Markov chains have been reached.
corresponds to a probe to which some of the cDNA targetsTable 1 shows the numbers of the target molecules bound
of type i may bind (except for the last state which collectgo probes on the array. Clearly, due to the non-specific binding
remaining unbound molecules). Lel; denote the set of as well as the stochastic nature of both the hybridization and
indices!?, 1 < Ij <m? 1< j < k+1, that indicate those cross-hybridization, information about the original concentra-
probes that are associated with one of the binding statestitths of the targets is lost. The ML solution (2), however,
the Markov chain. In particular, lefi denote the probe on recovers absolute values of the original concentrations, as
the microarray to which target binds specifically, and let jllustrated in Table 2.

I5,...,1i . denote the probes on the microarrays to which
kAt . 0] 0 |4684] 0O 0 | 1649 O 0
targeti binds non-specifically. 0T 0 577 o 518 ) o0 1864
Let uf“ denote the vector comprising firgt+ 1 compo- 0ol 0 797 | 6504 | 378 0 | 1203 0
nents ofy;, and letq® ™ = ¥ /¢;. Then its first component, 06649 0 | O | 375 | 838 | 810 | 0
¢F*1(1), is the probability that a target molecule of typés 8 8 8 8 7%58 8 8 8
hybridized, whileg ™ (5), 2 <j < k+1 are the probabilities o0 13031 0 ) 374 76768 10
thg\t a target molecule of typeis cross-hybridized. Define the o 0 0 0 T 869 385 1 0 0
m= x 1 vectorq; such that
TABLE |
.(li_) _ qf“(j),l§ € L, NUMBER OF CAPTURED MNA TARGETS ACCROSS THE ARRAY
4t 0, otherwise
Furthermore, define the matriy = [q1 92 ... q,.2]. Then 0 0 11503] 7 16 0 18 | 16
the microarray measurement model can be written as 23 15 42 6 8 (18 13 |39
y 15 7 21 | 19433| 40 | 10| 73 | 12
_ 0 | 19860 | 9 0 20 | 52| 55 | 13
s=Qct+w+v, (1) 8| 1 15 18 | 20988] 0 | 18 | 15
where ¢ = [e1 ... c¢,2]T is the m? x 1 vector of 1] 22 13 19 8 2 0 9
input concentrations of cDNA target molecules, ani the 272 12 9f§2 167 125 4213 2022716 g
m? x 1 vector of measured light intensities. Furthermoxe,

is them? x 1 vector that describes the inherent fluctuations TABLE II

in the measured signal. These fluctuations are due to the ESTIMATED INPUT CONCENTRATIONS OF THE TARGETS
probabilistic nature of the hybridization process and depend
on the signal intensity (essentially is the vector of shot- REFERENCES
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