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Abstract— Microarray technology relies on the hybridization
process, which is stochastic in nature. However, current measure-
ment and detection techniques do not fully exploit this stochastic
nature nor do they consider it in data analysis. In this paper,
we propose a probabilistic model of the DNA microarray and
employ this model for optimal estimation of gene expression
levels. Simulation results indicate significant improvement in the
reliability of the estimates over the direct readout of the data.

I. I NTRODUCTION

Recently, high-throughput assay technologies have gained
much attention in the genomic research community. DNA
microarrays, in particular, have attracted much interest due to
the large scale, parallel nature of the experiments, and the
richness of the information that they provide. This stands
in contrast to traditional techniques capable of analyzing
only a small number of genes at a time. DNA microarrays
[1] are primarily used to measure gene expression levels,
i.e., the transcription of the DNA data into messenger RNA
molecules (mRNA). DNA microarray technology is based on
hybridization, a process in which complementary DNA strands
specifically bind to each other. Typically, the surface of a DNA
microarray contains a grid of different single stranded DNA
oligonucleotide probes, whose locations are fixed during the
process of hybridization and detection. The target mRNA that
needs to be detected is first used to generate fluorescent labeled
cDNA which is then applied to the microarray. The labeled
cDNA molecules that are a perfect match to the microarray
probes bind to the complementary oligos. However, there will
be a number of non-specific bindings since cDNA may cross-
hybridize to probes that are not a perfect match but rather only
partial complements.

There has been a lot of work on employing statistical analy-
sis tools for interpretation of microarray measurements (see [2]
and the references therein). In this paper, we are interested in
a more fundamental problem – the one of optimal estimation
of the gene expressions. The number of hybridized molecules
varies due to the probabilistic nature of the hybridization.
This noise is Poisson-like at high expression levels, and more
complex at low expression levels where non-specific binding
becomes more significant [3]. We describe hybridization and
cross-hybridization processes by Markov chains, similar to
the techniques used in modeling affinity based sensors in
[4]. Using the stationary distribution of the Markov chains,
we formulate a statistical model of the microarray readout.
The biological noise is modeled as the shot noise thus ac-
counting for the inherent fluctuations of the measured signal.

The detection problem is posed as the maximum likelihood
optimization. Preliminary simulation results that we present
indicate significant improvement over direct readout.

II. M ODEL

We consider anm × m microarray, with m2 types of
oligonucleotide probes attached to its surface. A total of
N molecules ofn different types of cDNA targets, with
concentrationsc1, c2, . . . , cn,

∑n
i=1 ci = N , are applied to

the microarray. Our goal is to estimateci’s from a scanned
image of the array that gives information about the location
and number of hybridized and cross-hybridized probes. The
measurement is taken after the system reaches equilibrium.

For simplicity, assume that each cDNA fragment may
hybridize to only one of the oligonucleotide probes, while it
may engage ink non-specific bindings (cross-hybridizations).
Diffusion movement of the unbound cDNA molecules is mod-
eled as a random walk accross the array, and their distribution
is assumed to be uniform on the array [4].
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Fig. 1. Markov chain modeling states of a target molecule on a
microarray with one specific and k = 2 non-specific binding sites. The
hybridized state is denoted by ’H’, cross-hybridized states are denoted
by ’C’, the unbound state is denoted by ’N’.

Let ui denote the number of unbound molecules of typei,
i = 1, . . . , n. A cDNA in a close proximity to its matching
probe oligonucleotide will hybridize with probabilitypH,i.
Therefore, a fraction of the unbound targets of typei that is
being captured isuipH,i/m2. This fraction is constant at the
equilibrium; however, at a given time instant, any particular
molecule may be in a captured or in a released state. Therefore,
the probability that a particular unbound target is going to be
captured by its matching probe isph,i = pH,i/m2. Similarly,
the probability that any particular target cDNA will cross-
hybridize is pc,i = pC,i/m2. The probability that a target



is released is denoted bypr. [For simplicity, we assume
that all cross-hybridizations are equally likely and that the
probability of release is the same for both specific and non-
specific binding.] The Markov chain that models transitions
between possible states of a target with one specific andk = 2
non-specific binding sites is shown in Figure 1. The probability
pn = 1− kpc − ph in Figure 1 denotes the likelihood that an
unbound target remains free.

Let µi = [µi,1 µi,2 . . . µi,k+2]T be a vector whose
components are fractions of the total number of the targets of
typei that are in one of thek+2 states of the Markov chain in
Figure 1. In particular, letµi,1 denote the number of hybridized
molecules,µi,j , j = 2, . . . , k+1, denote the numbers of cross-
hybridized molecules in each of thek non-specific binding
sites, and letµi,k+2 be the number of unbound molecules. In
equilibrium, we are interested in finding the components of
the vectorµi such thatµi = Piµi, 1T µi = ci, and thus

µi =

[
I − Pi

1T

]†
·




0
...
0
ci


 , Pi =




1− pr . . . 0 ph

...
. . .

...
...

0 . . . 1− pr pc

pr . . . pr pn




where(·)† denotes a pseudoinverse.
Every state in the Markov chain for the typei target

corresponds to a probe to which some of the cDNA targets
of type i may bind (except for the last state which collects
remaining unbound molecules). LetLi denote the set of
indices lij , 1 ≤ lij ≤ m2, 1 ≤ j ≤ k + 1, that indicate those
probes that are associated with one of the binding states in
the Markov chain. In particular, letli1 denote the probe on
the microarray to which targeti binds specifically, and let
li2, . . . , l

i
k+1 denote the probes on the microarrays to which

targeti binds non-specifically.
Let µk+1

i denote the vector comprising firstk + 1 compo-
nents ofµi, and letqk+1

i = µk+1
i /ci. Then its first component,

qk+1
i (1), is the probability that a target molecule of typei is

hybridized, whileqk+1
i (j), 2 ≤ j ≤ k+1 are the probabilities

that a target molecule of typei is cross-hybridized. Define the
m2 × 1 vectorqi such that

qi(l
i
j) =

{
qk+1

i (j), lij ∈ Li,
0, otherwise.

Furthermore, define the matrixQ = [q1 q2 . . . qm2 ]. Then
the microarray measurement model can be written as

s = Qc + w + v, (1)

where c = [c1 . . . cm2 ]T is the m2 × 1 vector of
input concentrations of cDNA target molecules, ands is the
m2 × 1 vector of measured light intensities. Furthermore,w
is the m2 × 1 vector that describes the inherent fluctuations
in the measured signal. These fluctuations are due to the
probabilistic nature of the hybridization process and depend
on the signal intensity (essentially,w is the vector of shot-
noise). In particular, ifqi,j > 0, then a target molecule of type
j binds (whether specifically or non-specifically) to a probe of
typei. This is a Bernoulli event whose variance isqi,j(1−qi,j).
Sincesi =

∑m2

j=1 qi,jcj , the variance of signal fluctuations is

σ2
w,i =

m2∑
j=1

qi,j(1− qi,j)cj .

We further assume that the fluctuations are Gaussian, i.e., each
entry ofw has Gaussian distributionN (0, σ2

w,i). Finally, v in
(1) is the m2 × 1 vector whose components can practically
be assumed to have iid Gaussian distributionN (0, σ2), and
represent the noise due to imperfect instrumentation and other
biochemistry independent noise sources.

III. O PTIMAL ESTIMATION OF GENE EXPRESSIONLEVELS

The maximum-likelihood (ML) estimate of the input con-
centrations maximizes the probabilityp(s|c), and is given by

ĉ = Q−1s. (2)

As an example, we simulate an8 × 8 microarray, and
apply n = 6 types of cDNA targets. Furthermore,c =
[10000, 20000, 20000, 20000, 10000, 20000], and thus the total
number of target molecules isN = 100000. The probability
of hybridization of a cDNA target to the matching probe is
assumed to bepH = 0.8, while the probability of cross-
hybridization to any one ofk = 3 other probes is assumed
to be pC = 0.1. The probabilities of release from both the
hybridized and the cross-hybridized states for all targets are
pr = 0.02. The simulations are run sufficiently long so that
the steady-states of the Markov chains have been reached.

Table 1 shows the numbers of the target molecules bound
to probes on the array. Clearly, due to the non-specific binding
as well as the stochastic nature of both the hybridization and
cross-hybridization, information about the original concentra-
tions of the targets is lost. The ML solution (2), however,
recovers absolute values of the original concentrations, as
illustrated in Table 2.

0 0 4684 0 0 1649 0 0
0 0 872 0 818 0 0 864
0 0 797 6504 378 0 1203 0
0 6649 0 0 375 838 810 0
0 0 0 0 7858 0 0 0
0 0 0 0 0 0 0 0
0 0 3103 0 0 374 6768 0
0 0 0 0 869 385 0 0

TABLE I

NUMBER OF CAPTURED CDNA TARGETS ACCROSS THE ARRAY

0 0 11503 7 16 0 18 16
23 15 42 6 86 18 13 39
15 7 21 19433 40 10 73 12
0 19860 9 0 20 52 55 13
8 1 15 18 20988 0 18 15
11 22 13 19 8 2 0 9
22 10 9322 6 7 22 20216 4
7 18 15 17 185 43 27 9

TABLE II

ESTIMATED INPUT CONCENTRATIONS OF THE TARGETS.
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