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Abstract — A probabilistic model for the measurement 
noise in microarray systems is presented. This model 
includes the inherent Poisson noise of the assay, as well as 
the systematic errors which are typically introduced during 
microarray fabrication and detection processes. The model 
presented here formulates not only the uncertainty of the 
measured expression levels, but also the contribution of the 
each procedural step to the overall detection signal-to-noise 
ratio (SNR).   
 

I. INTRODUCTION 
 

Gene expression microarrays measure the expression level 
of thousands of genes simultaneously, providing a 
massively-parallel affinity-based detection platform in life 
science research [1]. Unfortunately, the high level of 
uncertainty associated with each microarray experiment 
often obscures some of the important characteristics of the 
biological processes of interest. The expression level 
uncertainty in such systems, fundamentally originates 
from the probabilistic characteristics of the detection 
process, all the way from sample extraction and mRNA 
purification to hybridization and imaging [2,3]. Currently, 
there are various techniques which increase the accuracy 
and signal-to-noise ratio (SNR) of the estimated values 
[4]. Nonetheless, all techniques rely on either comparative 
methods [5], or mathematical algorithms which introduce 
confidence zones by excluding the unreliable data and 
outliers [6].  Independent of the method utilized, the 
degree in which the SNR is improved in both approaches 
is still limited by the inherent microarray noise. 

 In this study we investigate and further model the 
underlying biochemical and fabrication noise sources 
which limit the SNR in microarrays.  The result of this 
study, can not only improve the efficiency of the 
estimation algorithms, but also give design insights into 
the setup of the different microarray-based experiments. 

 
II. MODEL 

 

A. Systematic noise vs.  inherent noise 
 

We define systematic errors as the unwanted 
deviations from the intended detection protocol. If these 
errors are accurately evaluated, in theory, they can be 
compensated by post experiment data processing. If not, 
they result in a particular type of measurement 

uncertainty, typically referred to as systematic noise.  
Examples of systematic noise sources are fluidic handling 
errors or non-uniformities in spotting the probes.  

We define inherent noise of the detection system as 
the unavoidable uncertainties even with ideal detection 
where no systematic error exists.  Inherent noise is 
basically inevitable since it originates from the stochastic 
nature of molecular-level interactions. Poisson noise 
sources in microarrays [2] and image sensor detection 
shot-noise [1] are examples of such noise sources. 
 
B. Sample extraction and mRNA purification  
 

In a typical microarray experiment, targets (m 
different mRNA molecules) are initially extracted from a 
sample and subsequently purified. Let KE denote the 
fraction of the original volume which is extracted (i.e., the 
extracted volume is KE times the original sample volume). 
Furthermore, assume that the original sample has ni targets 
of the ith mRNA type, and that the purification process has 
the yield of Yp. Now we can model this procedure to be a 
random deletion process. Consequently, the number of 
the ith targets obtained after extraction and purification, 
XP,i, becomes a random variable with a Gaussian 
distribution when ni is large (generally the case in typical 
microarray assays). This type of variation or noise is 
inherent to microarrays and conceptually very similar to 
partition noise (see Table I for details). 

If the extracted volume has a systematic error with 
zero mean and standard deviation of σE, we can use 
Burgess variance theorem [7] to reassess the distribution 
of XP,i as shown in Table I. 

 
C. Reverse Transcriptase (RT) 
 

The goal of RT process is to generate cDNA copies 
from all different mRNA target molecules. The process is 
basically another random deletion process, similar to 
extraction, with yield (survival probability) of YRT, 
defined as the probability of creating a single cDNA 
molecule from individual mRNA molecules. We again 
employ Burgess variance theorem to find the mean and 
variance of the total number of cDNA molecules XRT,i  
generated from target i (see Table I). 
 



 

SNR drop due to cross hybridization noise

Hybridization
RT + Hybridization
Purification + RT + Hybridization

 
 
 
 
 
 
 
 
 
 
 

Table I: Microarray noise formulations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: SNR with different detection procedures. 
 
D. Array fabrication 
 

        Fabrication of the array involves spotting or 
synthesis of the ssDNA probes on a planar surface. The 
capturing process in affinity-based sensors (microarrays) 
is inherently probabilistic [8] where the statistics of the 
capturing process defines the specificity of the probe. In 
typical microarrays, the probe specificity, imperfect 
synthesis, and surface non-uniformities, all contribute to 
the nonspecific capturing events and systematic errors in 
capturing efficiency. To model these, we can define the 
capturing probability qij for the capturing of molecule j at 
location i. This basically results in a Markov model for the 
hybridization, where we can calculate the statistics of the 
captured targets at equilibrium [8]. 
 
E. Hybridization and cross-hybridization 

 

It has been reported that the dominant measurement 
noise in microarrays is caused by the hybridization, which 
depends on the target expression level [2,8]. This Poisson-
like noise indicates that the number of hybridized 
molecules varies due to the probabilistic nature of the 
hybridization. Beside the fluctuations of the number of 
specific bindings (i.e., the hybridized molecules), non-
specific bindings (i.e., the process of cross-hybridization) 
may also take place which further degrade the certainty of 

the measurement. Therefore, at any time, a target particle 
may be i) hybridized to the perfectly complementary 
probe, ii) cross-hybridized to a partially complementary 
probe, or iii) free. It can be shown that the microarray 
measurement model, given all of the aforementioned noise 
processes, can be written as follows: 

 

wQnX += ,                           (1)  
 

where n denotes the vector of quantities of the mRNA 
target molecules in the original sample, and X denotes the 
vector of captured cDNA molecules. Vector w is the 
vector of Gaussian noise whose variance depends upon n, 
i.e., w is a shot-noise that models signal fluctuations due 
to sample preparation, RT, hybridization, and cross-
hybridization. Its variance is computed from the stationary 
distribution of the previously mentioned Markov chain. 
The components of each vector and coupling matrix 
Q mmR ×∈  are listed in Table I. 

Using the proposed framework, in Fig. 1, we plotted 
SNR as a function of the original mRNA number. In this 
example, KE =0.1, σE =0.03, Yp=0.6, and YRT=0.2. As 
evident from Fig. 1, the random deletion processes 
basically dominates the SNR degradation on high 
concentration levels assuming capturing probability is of 
10-2 in hybridization, whereas in low concentrations cross-
hybridization dominates SNR (probability is assumed to 
be 10-4 with 106 background targets). This specific result 
matches the microarray empirical noise datasets which 
were previously reported [1,2], demonstrating the validity 
of this modeling approach. 
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