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MOTIVATION FOR TRANSFORMER MODELING

Essential for Radio Frequency Integrated Circuits (RFICs)

3-D field solvers are inconvenient

– Numerically expensive and cumbersome

– Good for verification but not for design

Scalable, analytical models

– Design guidelines and explore trade-offs

– Circuit design and optimization



SELF-INDUCTANCE
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MUTUAL INDUCTANCE
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NON-IDEAL TRANSFORMER
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Series resistance.

Port-to-port & port-to-substrate capacitances



CONFIGURATIONS
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Three or four terminal device

Grounded terminals



TAPPED TRANSFORMER
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INTERLEAVED TRANSFORMER
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STACKED TRANSFORMER
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Area efficient
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STACKED TRANSFORMER VARIATIONS
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Bottom spiral Top spiral
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Shift top and bottom spirals laterally or diagonally

Trade-off lower for reduced port-to-port capacitance



COMPARISON OF TRANSFORMER REALIZATIONS

Transformer Area Coupling Self- Self-resonant

type coefficient, inductance frequency

Tapped High Low Mid High

Interleaved High Mid Low High

Stacked Low High High Low

Non-idealities result in trade-offs

Optimal choice determined by circuit application

Transformer models needed for comparison



SELF-INDUCTANCE CALCULATION
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Verified by measurements (75) and 3-D field solver simulations (17,000)



TAPPED TRANSFORMER MODEL
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MUTUAL INDUCTANCE CALCULATION

Single inductor.
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Interleaved transformer.

PSfrag replacements

(primary) (secondary)

Tapped transformer.
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FOR TAPPED AND INTERLEAVED TRANSFORMERS

1. Find , and

2. Determine from

3. Evaluate



STACKED TRANSFORMER MODEL
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CURRENT SHEET APPROACH FOR
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Reduce complexity by

Use symmetry

Derive simple expression using electromagnetic theory



FOR STACKED TRANSFORMERS
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Metal and oxide thicknesses have only 2nd order effects on



FOR STACKED TRANSFORMERS

1. Find and

2. Determine

3. Evaluate



ACCURACY OF MODELS

Lumped model of distributed structure

Substrate not modeled

Patterned Ground Shield (PGS)

– Eliminates resistive and capacitive coupling to substrate

– Inductive coupling to substrate may degrade performance
at high frequencies



EXPERIMENTAL SET-UP
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EXPERIMENTAL VERIFICATION: TAPPED
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EXPERIMENTAL VERIFICATION: STACKED 1
Stacked transformer with
top spiral overlapping bot-
tom one
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CONTRIBUTIONS

On-chip transformer models

Expressions for mutual inductance and
mutual coupling coefficient

Models verified by measurements

Basis for design and optimization of
transformer circuits
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