Modeling and Characterization of On-Chip Transformers

Sunderarajan S. Mohan, C. Patrick Yue,

Maria del Mar Hershenson,

S. Simon Wong, and Thomas H. Lee

Center for Integrated Systems

Stanford University

OUTLINE

- Motivation
- Background
- On-chip transformer realizations
- Models
- Experimental verification
- Summary

MOTIVATION FOR TRANSFORMER MODELING

- Essential for Radio Frequency Integrated Circuits (RFICs)
- 3-D field solvers are inconvenient
 - Numerically expensive and cumbersome
 - Good for verification but not for design
- Scalable, analytical models
 - Design guidelines and explore trade-offs
 - Circuit design and optimization

Self-Inductance

Quantity	uantity Units	
i_1	А	
v_1	V	
t	S	
L_1	н	

•
$$v_1 = L_1 \frac{\partial i_1}{\partial t}$$

 nH typical in RF On-chip environment

MUTUAL INDUCTANCE

$$v_2 = M \frac{\partial i_1}{\partial t}$$

TRANSFORMER

•
$$v_1 = L_1 \frac{\partial i_1}{\partial t} + M \frac{\partial i_2}{\partial t}$$

 $v_2 = L_2 \frac{\partial i_2}{\partial t} + M \frac{\partial i_1}{\partial t}$

- Mutual coupling coefficient, $k = \frac{M}{\sqrt{L_1 L_2}}$
- $|k| \leq 1$

NON-IDEAL TRANSFORMER

- Series resistance.
- Port-to-port & port-to-substrate capacitances

CONFIGURATIONS

- Three or four terminal device
- Grounded terminals

TAPPED TRANSFORMER

- Low $k (\approx 0.3 0.5)$
- High L_1 , L_2
- Top metal layer
- Asymmetric
- Low port-to-port capacitance

INTERLEAVED TRANSFORMER

- Medium $k (\approx 0.7 0.8)$
- Low L_1 , L_2
- Top metal layer
- Symmetric
- Medium port-to-port capacitance

STACKED TRANSFORMER

Top View

:emente	Side View	top spiral
		bottom spiral

- $\bullet \; {\rm High} \; k(\approx 0.9)$
- High L_1 , L_2
- Multiple metal layers
- Area efficient
- High port-to-port & port-to-substrate capacitances

STACKED TRANSFORMER VARIATIONS

- Shift top and bottom spirals laterally or diagonally
- Trade-off lower k for reduced port-to-port capacitance

COMPARISON OF TRANSFORMER REALIZATIONS

Transformer	Area	Coupling	Self-	Self-resonant
type		coefficient, k	inductance	frequency
Tapped	High	Low	Mid	High
Interleaved	High	Mid	Low	High
Stacked	Low	High	High	Low

- Non-idealities result in trade-offs
- Optimal choice determined by circuit application
- Transformer **models** needed for comparison

ements SELF-INDUCTANCE CALCULATION

• Verified by measurements (75) and 3-D field solver simulations (17,000)

TAPPED TRANSFORMER MODEL

MUTUAL INDUCTANCE CALCULATION

Tapped transformer.

<u>k for Tapped and Interleaved Transformers</u>

- 1. Find L_1 , L_2 and L_{T}
- 2. Determine *M* from $M = 0.5(L_{\rm T} L_1 L_2)$

3. Evaluate
$$k = \frac{M}{\sqrt{L_1 L_2}}$$

STACKED TRANSFORMER MODEL

- Evaluate $C_{\rm ov}$, $C_{\rm ox,t}$, $C_{\rm oxm}$, $C_{\rm ox,b}$, $R_{\rm s,t}$ & $R_{\rm s,b}$ by extending previous work
- Use modified Wheeler expression for $L_{\rm s,t}$, $L_{\rm s,b}$
- Calculate M

CURRENT SHEET APPROACH FOR k

- Reduce complexity by $4n^2$
- Use symmetry
- Derive simple expression using electromagnetic theory

<u>k for Stacked Transformers</u>

cements

• Metal and oxide thicknesses have only 2nd order effects on k

\underline{M} for Stacked Transformers

- 1. Find L_1 and L_2
- 2. Determine k
- 3. Evaluate $M = k\sqrt{L_1L_2}$

ACCURACY OF MODELS

- Lumped model of distributed structure
- Substrate not modeled
- Patterned Ground Shield (PGS)
 - Eliminates resistive and capacitive coupling to substrate
 - Inductive coupling to substrate may degrade performance at high frequencies

EXPERIMENTAL SET-UP

DIE PHOTO

EXPERIMENTAL VERIFICATION: TAPPED

EXPERIMENTAL VERIFICATION: STACKED 1

CONTRIBUTIONS

- On-chip transformer models
- Expressions for mutual inductance and mutual coupling coefficient
- Models verified by measurements
- Basis for design and optimization of transformer circuits

IBM fellowship support

NSF contract MIP-9313701

Rockwell International Dr. Christopher Hull Dr. Paramjit Singh

Staff of the Stanford Nanofabrication Facility

Industrial Sponsors of the Center for Integrated Systems