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MotivationMotivation

www.dnavision.be

• Affymetrix + Agilent alone had $2.4 billion (USD)
in revenue in 2007 for bio-analytic measurements

• Drug discovery

• Diagnostics

• Research

• Forensic testing

• Growing interest in personalized medicine

• Therapeutics tailored to your genetic profile

• Conventional microarrays are expensive, big bulky 
systems (optics, lasers, reagents)

• Can we leverage integrated circuit fabrication 
techniques for a low-cost approach?
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OutlineOutline

• Motivation

• Background

• Charge sensing of DNA polymerization

• CMOS sensor

• Conclusions
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DNADNA

• Contains genetic instructions to construct and regulate cellular 
components

• Consists of 4 nucleotides 

• Adenine (A), Thymine (T), Cytosine (C), Guanine (G)

• Usually found double-stranded, but single-stranded version exists too

• A only binds with T, C only binds with G
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MicroarrayMicroarray Basics IBasics I

A
A
G
C
T
T

A
A
G
C
T
T

T
T
C
G
A
A

T
G
C
A

T
T
C
G
A
A

T
G
C
A

C
C
G
C
T
T

C
C
G
C
T
T

G
G
C
G
A
A

G
G
C
A

A
A
G
C
C
G

Spot 1 Spot 3Spot 2

Target ssDNA

Probe ssDNA

Fluorescent Label

A
A
G
C
C
G

www-als.lbl.gov



Erik Anderson 6

MicroarrayMicroarray Basics IIBasics II

Images courtesy of Affymetrix

Affymetrix Gene Chip

Microarray Scanner –
Cost: ~$200k

Gene Chip 
Image

• Light from a grid location indicates the presence of the corresponding target 
in a sample

• Limitations:  Expensive and not portable
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TAG4 Example from SGTC TAG4 Example from SGTC 
• TAG4 = yeast genome used with optical scanners

• Run time
– DNA Extraction 2 hr

– PCR & labeling 2 hr

– Hybridization preparation 0.5 hr

– Hybridization 6-16 hr

– Wash & Stain 3 hr

– Scan of chip 0.25 hr

• Cost per chip (“Academic Prices”)
– Chip $150-300

– Reagents $50-150 

• 100,000 features or “spots” which are 8 µm x 8 µm

• Probes are 20 nucleotides in length

• Targets range from 100-200 nucleotides
– 10-100 ng/mL amplified (PCR) to concentrations of 1 µg/mL

• Works well when you are interested in massively parallel detection
– Suitable for point-of-care applications?
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Post Processing ChallengesPost Processing Challenges

Thewes et al. ISSCC 2002.

Han et al. ISSCC 2007.
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System RequirementsSystem Requirements

• Suitable for point-of-care applications
– Leverage IC fab technology for low-cost approach

– Label-free

– Easy post-processing

– Integrate microarray with the “readout”

– Reduced number of features from conventional 
optical techniques – goal is 25

• Detects targets at 10 µg/mL
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DNA PolymerizationDNA Polymerization

Second strand CANNOT
be synthesized

Second strand CAN
be synthesized

Polymerase

Polymerase works at double-strand / single-strand junctions
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Principle of DetectionPrinciple of Detection
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Polymerization Chemical ReactionPolymerization Chemical Reaction
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Induced ChargeInduced Charge

Charge is 0.1 electrode-
widths above electrode

Immobilize DNA close to electrode 
to maximize induced charge

Electrode location

What fraction of a charge is induced on a 
nearby electrode?



Erik Anderson 14

CMOS System RequirementsCMOS System Requirements

• Linear, monotonic signal response
• “Low power” ( back-of-envelope estimate, ≤ 42 

mW)
– Die surface temperature should not rise more than 

1 °C above ambient over 5 minutes 

• “Low noise”
– Amplifier noise ≤ other system noise contributions

• Electrode area large enough for spotting DNA 
onto electrodes ( ≥ 100 – 200 square µm)

• Easy post-processing
• ±1 V swing at output (use thick gate-oxide 

devices)



Erik Anderson 15

CMOS ArchitectureCMOS Architecture
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OTAOTA
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OTA SpecsOTA Specs

250 kHzUnity Gain

1.7 mWPower per pixel

110 dBPSRR-

70 dBPSRR+

110 dBCMRR

75°Phase Margin

82 dBGain(Vo = -1V)

63 dBGain(Vo = 1V)

110 dBGain

0.18 µm CMOS (3.3V devices)Technology

Simulated for typical corner at 75 °C
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Reset LogicReset Logic

Used to extend dynamic range

Saturation Detector

-

+
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Easy PostEasy Post--ProcessingProcessing

Polymer that we apply

Passivation from fab

Silicon

Electrode in top metal

Standard 
CMOS fab
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Temporal NoiseTemporal Noise

• Noise spectral density is not the right analysis

• Signal is observed in time → want time domain noise 

• Temporal noise = variance of noise at a particular 
instant in time

= Temporal noise
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Electronic Noise ContributionsElectronic Noise Contributions
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Die Photo + Test BoardDie Photo + Test Board

Bondwires encapsulated in epoxy

Die

Pixel
300 µm
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Minimum Detectable CurrentMinimum Detectable Current

Noise from enzymatic buffer dominates electronic noise

• Enzymatic buffer noise is 
constant w.r.t. integration time 
~830 µV RMS

• Limit of detection with buffer is 
25 fC

• Corresponds to biological 
limit of detection of 8 ng/mL
(worst case)

• Crosstalk dominated by system 
noise → not measurable
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Measured Signal from CMOS ChipMeasured Signal from CMOS Chip

• Target concentration 10 µg/mL

Probe:  GTG CCA AGT ACA TAT GAC CCT ACT

Exposed segment

CAC GGT TCA TGT ATA CTG GGA TGA CCA TAC CTG TAC GAC TCG AGT GAC GAG ACG GCG TA
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ConclusionsConclusions

• Designed first CMOS DNA polymerization 
sensor
– Targeted to low-cost, point-of-care applications

– Demonstrated sensor could detect useful 
concentrations
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SupplementalSupplemental

• Following slides are supplemental
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Future ApplicationsFuture Applications
• Clinical, point-of-care diagnostics
• Personalized medicine

– Enabled by low cost fab techniques
• Pathogen detection
• Short segment DNA sequencing

– Sequentially add nucleotides and observe the signal
• Simple Nucleotide Polymorphism (SNP) Detection

– SNP = an alteration in a few nucleotides, e.g. AAAA vs. 
ATAA

– SNPs form 99.77% of all genetic variation
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Pathogen DetectionPathogen Detection
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SNP DetectionSNP Detection
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Short Segment SequencingShort Segment Sequencing

• Sequentially add bases

• Wash away unused bases between additions
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Thermal IssuesThermal Issues
• Does the power dissipation adversely affect operation?

• Must keep surface heating low enough so that…

• chemical reaction can still occur

• buffer does not evaporate

• DNA denaturing not a problem, i.e. double strand → 2 single  strands

• Denaturing occurs at high temperatures, ~ 55 °C or higher

• Enzyme “activity” is affected by temperature

• “activity” = rate of enzyme performing its function

• 43 mW → 0.5 °C change measured over 5 minutes, buffer still present

CMOS heat source

Power dissipation not a problem 
→ no change necessary



Erik Anderson 32

Some Electronic Some Electronic MicroarraysMicroarrays

Dill, Biosensor & Bioelectronics, 2004.

An Electroactive enzyme (HRP) generates a current 
flow into the electrode.

Capacitance measurement. Stagni, JSSC 2006.

Redox cycling generates current.  Schienle, JSSC 
2004

• Electronic approaches integrate the 
microarray chip with the “reader”
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Immobilizing DNAImmobilizing DNA

2 Ways

1. Build up ssDNA nucleotide-by-nucleotide using photolithography and 
chemistry

• Requires ~4n masks, n = sequence length (25-mer → 100 masks)

2. “Spot” DNA onto location by depositing a droplet of liquid
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Surface ChemistrySurface Chemistry

1. Wash surface with acetone and iso-propanol for 1 minute each
2. 3 minute exposure to UV-ozone 
3. Surface immersed in 5% (w/w) (chloromethyl)phenylethyltrimethoxysilane

in ethanol solution with gentle shaking for 12 hours
4. Rinsed with ethanol 3 times and dried in air
5. 100 µM solution of probe oligonucleotides in phosphate buffer saline at pH 

7.4 (0.01M sodium phosphate, 1.0 M NaCl) was manually spotted onto the 
microchips and kept in a humidifier overnight, immobilizing the probes 
above the electrodes

6. Unattached probes washed away in DI water
7. Chips blocked with 50 mM ethanolamine solution for 2 hours at room 

temperature
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DiffusionDiffusion--based Crosstalkbased Crosstalk

• Why does crosstalk increase with time at larger 
separations when it decreases with smaller separations?

• Look at the induced voltage.  Smaller separations are 
affected by a reflecting boundary.
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On Pulse ShapesOn Pulse Shapes
• Possible causes of variation in height and width 

– DNA crowding

– Spots not identical

– dNTPs diffuse to each spot – varying distance

– Distribution of polymerase
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Quantization NoiseQuantization Noise

12

2
∆Noise Power =

For a 5V range

•12 bits → 352 µV

•16 bits → 22 µV

•24 bits → 86 nV

For a 3.3V range

•12 bits → 232 µV

•16 bits → 15 µV

•24 bits → 57 nV
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Electronic Noise (Theoretical vs. Measured)Electronic Noise (Theoretical vs. Measured)
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Correlated Double SamplingCorrelated Double Sampling

• Popular technique in image 
sensor read out circuits 

• Sample integrator output at 
beginning and end of integration 
period and subtract

• Cancels thermal reset noise of 
integration capacitor and partially 
cancels 1/f noise

Can CDS reduce noise?
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Correlated Double Sampling?Correlated Double Sampling?

• Correlated double sampling does not have much of an affect above 100 ms.

• Assumes no noise added by CDS

Dotted = with CDS

Solid = without CDS
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Number of ProbesNumber of Probes

• 1011 – 1012 probes / cm2

• 90 – 900 Million probes in 300 µm square area

• Probes occupy between 0.4 – 4% of surface 
area
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Detection Limit & NoiseDetection Limit & Noise
• Qn/q “noise” charges at electrode

• Each “real” charge induces f “noise” charges → Qn/(fq) “real” charges

• Assume 1 signal charge per probe (could get multiple)

• For P probes on the electrode → θ = Qn/(fqP) is the required fraction of 
“bound” probes 

• From Langmuir-Isotherm theory, θ = [target]bulk/([target]bulk + Kd ) where Kd = 
ratio of forward and reverse rate constants

• [target]bulk = Kd Qn /(fqP) 

• P = 90 – 900 million, q = 1.6e-19, Qn = 25 fC, Kd = 10pM-10nM (depends on 
many factors, e.g. probe length, target length)

• [target]bulk= 8 ng/mL (Kd = 10nM, P = 90 million, f = 0.5) worst case

• [target]bulk= 40 fg/mL (Kd = 10pM, P = 900 million, f = 1) best case
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Comparison with other WorkComparison with other Work

• Look at other CMOS DNA chips

• [1] Detected 31 µg/mL at SNR=3∗

• [2] not reported

• [3] Detected ?? at SNR=1.5∗

• This work    10 µg/mL at SNR=180∗

[1] Stagni et al., IEEE Sensors, 2007.

[2] Schienle et al., JSSC 2006

[3] Stagni et al., JSSC 2006

∗ = label-free
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Diffusion CoefficientsDiffusion Coefficients

• H+ 9000 µm2/s

• K+,Cl- 2000 µm2/s

• Mg2+ 1400 µm2/s

• Source: Kovacs Micromachined Transducers, 
CRC Table


