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We study the statistical behavior of affinity-based biosensors. The detection uncertainty and noise in
such devices originates primarily from probabilistic molecular-level bindings within the sensing
regions, and the stochastic mass-transfer processes within the reaction chamber. In this paper, we
model the dynamic behavior of these sensory systems by a Markov process, which enables us to
estimate the sensor inherent noise power spectral densitysPSDd and response time. We also present
the methods by which the Markov parameters are extracted from the reaction kinetic rates, diffusion
coefficients, and reaction chamber boundary conditions. Using this model, we explain why Poisson
shot noise has been reported in such biosensors and additionally predict a Lorentzian profile for the
fluctuation PSD. Furthermore, we demonstrate that affinity-based biosensors have a
quantum-limited signal-to-noise ratiosSNRd. We also show that the SNR decreases as the
dimensions are isomorphically scaled down while the biosensor response speed increases,
substantiating a fundamental trade-off between biosensor speed and accuracy. ©2005 American
Institute of Physics. fDOI: 10.1063/1.1861970g

I. INTRODUCTION

In the past decade, molecular biology has moved from
being exclusively a research tool in life sciences to having
practical applications in the main stream of medicine. This is
mainly due to the capabilities of the existing molecular biol-
ogy detection platforms, which enable researchers to study
and analyze biological molecules much more efficiently and
if required, in a high-throughput fashion.

Today, there are a variety of different detection platforms
in molecular biology.1 One of the conventional and widely
used techniques is affinity-based sensing. A technique which
incorporates a biological or biologically derived sensing el-
ement either integrated within or intimately associated with
the physiochemical transducer.2 These sensory systems take
advantage of the selectivity and specificitysaffinityd of bio-
molecular interactions, such as DNA-DNA hybridization in
gene chips3 or antibody-antigen interactions in immuno-
assays.4 Independent of the molecules involved, detection in
affinity-based biosensors calls for the following fundamental
stepsssee Fig. 1d: sid analyte molecules within the reaction
chamber collide with the capturing sitessprobesd, sii d the two
species form a chemical bond, and ultimatelysiii d they take
part in a measurable transduction process. From a physical
point of view, all affinity-based biosensors share the first two
steps, whereas the third step may differ among platforms.
The transduction processes can be triggered by either the
intrinsic characteristics of analyte, such as charge in ion-
sensitive detection devices,5,6 or an extrinsic entitysreporter
moleculed physically attached to the analyte, such as fluores-
cent spectroscopy labels.7 In general, the fidelity of the bio-
sensor in terms of signal-to-noise ratiosSNRd is a function of
the uncertaintysnoised of all of the aforementioned steps.

However, the focus of this paper is the stochastic analysis
and quantification of the first two steps which as we will
demonstrate, is the dominant source of noise in most sys-
tems. Little work has been reported on this subject and this
study models thebiological noise of affinity-based biosen-
sors.

Generally speaking, the detectable signal in all conven-
tional sensory systemssincluding affinity-based biosensorsd
is generated by the aggregate contribution of individual
eventsse.g., collision, absorption, emission, etc.d, originating
from probabilistic microscopic systems. In electronic and
optoelectronic sensors, for example, the microscopic compo-
nents of the systems are electrons and photons within solid-
state matter. Accordingly, the dynamical behavior of such
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FIG. 1. Detection in affinity-based sensors requiressad collision of analyte
particles with the binding sites followed bysbd analyte capturing and trans-
duction processes.
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system, characterized by the expected response and the spon-
taneous fluctuationsnoised, can be characterized by statistical
mechanical methods described for electrons and photons.8,9

In affinity-based biosensors on the other hand, the micro-
scopic components of the system are not small particles like
electrons anymore; they are molecules. Since molecules are
large-scale quantum-mechanical entities10 ssystems with a
large number of discrete statesd, for the purpose of stochastic
analysis, we can still apply similar approaches used for elec-
tron devices.11,12 Quantum chemical and biological systems
are essentially more complicated than quantum electronic
systems; nevertheless, because of their similarity at the el-
emental level, we anticipate signal-dependent fluctuations in
the form of Poisson shot noise, which is common in many
solid-state optoelectronic devices.9 In this study, we examine
this similarity, show its biophysical origin, and comprehen-
sively quantify its behavior in affinity-based biosensors.

It is important to realize that affinity-based biosensors
essentially comprise of considerably less number of probabi-
listic particles compared to optoelectronic sensors. Thus, the
mesoscopic signal fluctuationsbiological shot noised quanti-
fied in this paper is expected to be observed in much larger
dimensions. This observation has been previously reported in
DNA microarrays platforms13 as well as in many other
affinity-based transducers.14–18 In addition, we predict that
this type of noise, i.e., biological shot noise, will become
significantly more important because of the trend toward
implementation of small-scale microfabricated affinity-based
biosensors.19–23 The analytical results of this paper can con-
ceivably aid the sensor designer in better understanding the
fundamental trade-offs among scaling, SNR, and response
time.

To comprehensively study the SNR of affinity-based bio-
sensors, initially in Sec. II, we introduce the mathematical
methods to model the statistical behavior of analyte captur-
ing, considering the binding kinetics and the mass-transfer
processes using a Markov model. We will explain how the
model can be applied to extract a closed-form noise solution
and settling time approximation in Sec. III. Additionally, we
derive the quantum-limited SNRsdefined as the maximum
achievable SNRd of these systems in both the presence and
absence of the transducer noise. As a practical numerical
example, which verifies the accuracy of the predicted results,
we utilize the stochastic model to investigate the behavior of
a hybridization-based DNA sensor in Sec. IV. The theoretical
prediction for noise calculated in this paper essentially
proves the existence of biological shot noise with a Lorent-
zian power spectral densitysPSDd.

II. BIOSENSOR STOCHASTIC MODEL

A. Analyte motion

Molecules, cells, and many other analytes immersed in
the aqueous reaction chamber of biosensors are subject to
thermal fluctuations and, perhaps on particular sensory plat-
forms, subject to electromagnetic or mechanical forces.
While mechanical movementse.g., convectiond and electro-
magnetic forcesse.g., electrophoresisd are in some sense de-
terministic, thermal fluctuation is random in nature. Thermal

fluctuations of a particle from a microscopic point of view
follow the characteristics of a typical random-walk process24

si.e., Brownian motiond, which results in a diffusive spread-
ing in macroscopic systems.

It is challenging to statistically follow the motion of each
molecule in the general case using continuity equation for-
mulation. However, we can consider a Markov process25 to
model the particle stochastic behavior within the reaction
chamber. In this model, each state of the process corresponds
to a fixed coordinate within the reaction chamberfFig. 2sadg.
The transition probabilities are subsequently defined as the
probability analyte particles moving from each coordinate
sstated to the other in a sufficiently small time intervalDt.
The main advantage of this type of modeling is the stochastic
nature of the model, which calculates the probability distri-
bution functionspdfd of the analyte particles. Additionally,
we can easily derive the expected behaviorsensemble aver-
aged of the system, a quantity that is generally calculated
using continuity-based equation formulation.

For two arbitrary coordinatesv̄i and v̄j in the system,
represented by statesi and j, the state transition probability
from statei to j for an analyte particle in time intervalDt is
denoted bymi,j

mi,j = Probfx̄sDtd = v̄iux̄s0d = v̄jg. s1d

where x̄s0d and x̄sDtd specify the coordinate of an analyte
particle at times 0 andDt, respectively. The particle transi-
tion matrixM can be constructed, where itsij th elementmi,j
is defined ins1d sM PRN3N and N is the total number of
statesd. In such a system if the analyte particle has the prob-
ability distribution ofrs0d at time zero across the state space,
whererstdPRN for all t, at Dt we have

rsDtd = Mrs0d. s2d

Typical biosensor structures have a number of analyte
particles within the reaction chamber. Provided that the mo-
tion of analyte particles is statistically independent,M and
rstd become independent, resulting in a homogeneous Mar-

FIG. 2. Markov model forsad probabilistic motion in the reaction chamber
and sbd motion in the presence of immobilized binding sites. Each coordi-
nate corresponds to a state in the process where particles can move into or
leave. x̄std represents the location of the analyte particle at timet and v̄i
defines the coordinates of the statei in the system.
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kov process. Note that this is, in fact, a realistic model for
most biosensors since statistical motion in such systems is
only governed by the analyte particles interaction with the
solution molecules and not by analyte-analyte interaction. In
this scenariosa homogeneous Markov processd we can cal-
culate the spatial probability distribution of the analyte par-
ticles in all time increments dividable byDt, given the initial
distributionrs0d, such that

rskDtd = Mkrs0d, s3d

wherek is an integer number. If we haven particles in the
system we can also define a spatial concentration distribution
of the particlesCstd, whereCstd=nrstd. Exact formulations
like s3d can be implemented forCstd, except for the transition
matrix that might become a function ofn, which is defined
asMn. In this general case we have

nrskDtd = CskDtd = Mn
kCs0d = nMn

krs0d. s4d

Matrix M sor Mnd can theoretically be estimated for any
small time incrementDt, given the exact statistics of the
mass transport process described by the continuity
equation.24

B. Analyte capturing

Now that we have a statistical model of mass relocation
within the solution, we need to incorporate the boundary
conditions of the reaction chamber. The boundary conditions
for conventional biosensors are either purely reflectivesinert
walls of the chamber and the surface of the solutiond or se-
lectively absorbingssurfaces where probes existd. Incorpora-
tion of reflective boundaries into the Markov model is car-
ried out by assigning zero probability for particles to move
beyond boundaries. However, for selective absorption we
need to have a probabilistic model of the collision and inter-
action process.

Analyte collision with the binding sites results in differ-
ent possible outcomessreactive, elastic, and inelastic
collisionsd.26 As a result, we can introduce a probabilistic
model to describe the specific binding of an analyte particle
X to a single probeY in an affinity-based sensorfFig. 2sbdg.
To begin with, we assume thatY is confinedsimmobilizedd
within a certain coordinatese.g., state 0d, which is valid for
most biosensor structures. Now we can state that any mean-
ingful interaction betweenX and Y at time t only occurs
when x̄std= v̄0 si.e., moleculeX is in intimate proximity of
Yd. If the bulk-phase reaction betweenX andY species has
the association ratek1 and disassociation rate ofk−1, where
ssymbol f g indicates concentrationd

5X + Y ↔
k1,k−1

XY

dfXYg
dt

= k1fXgfYg − k−1fXYg 6 , s5d

we can apply the following approximation to find the transi-
tion probabilities between captured statec of the analyte and
the collided state 0:

mc,0 = k1fYmgDt,

m0,c = k−1Dt, s6d

wheremc,0 and m0,c are also defined as the association and
disassociation probabilities andfYmg is the saturation con-
centration of Y in s5d. The physical justification fors6d
comes from the fact that in the bulk-phase saturation concen-
tration of Y, we ensure that allX particles are effectively in
close proximity ofY moleculesfFig. 3sadg. In this case indi-
vidual Y molecules on average occupy afYmg−1 volumefFig.
3sbdg which is equivalent to whenx̄std= v̄0 in the Markov
model if Dx=1/2fYmg−1/3. Consequently, the reaction rate of
X at state 0 should have similar kinetics as whenfYmg in
bulk phase, which results ins6d. It is imperative to under-
stand that we can use the macroscopic ratesk1 and k−1 to
definemc,0 andm0,c only when individual molecule binding
incidents are statistically independent,Dt is small enough
that all entries inMn are much smaller than one, andDx is
equal to 1/2fYmg−1/3. Usings6d for absorbing boundaries and
s4d for the mass relocation and reflection cases, we can sta-
tistically analyze the biosensor structure in its entiretyssee
Fig. 4d.

FIG. 3. When the concentration of binding moleculesfYmg is high enough
that the reaction kinetics becomes insensitive to its increase, we practically
ensure thatsad every analyte molecule has effectively aY molecule in its
proximity. This is equivalent in average tosbd, a system where eachY
molecule occupies a volume equal tofYmg−1, and analyte molecules have a
reactive distance ofDx=1/2fYmg−1/3.
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C. Stochastic analysis

1. System equilibrium distribution

It is important to realize at this point that the transition
matrix Mn can be utilized to inspect various characteristics
of the system without the need of applyings2d and s3d for
numerical simulation. We can easily prove that the general
solutionrstd, which defines the analyte distribution at timet,
given initial conditionrs0d, is derived using the following:27

rstd = expsfMn − I gDt−1tdrs0d = Hnstdrs0d, s7d

whereI is the unity matrix with the same dimensions asMn.
Matrix Hnstd advances the initial distribution in time and can
be calculated using the matrix exponential function, which in
effect exponentiates eigenvalues of the matrix. We can dem-
onstrate that the stochastic model for a biosensor system with
n analyte particles and no analyte sink or source terms be-
comes a closed homogeneous Markov process whereMn has
a single eigenvalue equal to one. All other eigenvalues ofMn
are less than one, ensuring a single equilibrium mode asso-
ciated with a single equilibrium distributionrE described by
the eigenvector of the largest eigenvalue. It can be shown
that Mn andHnstd sharerE such that

rE = HnstdrE. s8d

2. Settling time

The next logical question to ask is how long it will take
for the system illustrated in Fig. 4 to reach equilibrium. If the
initial analyte concentration is known, usings7d one can eas-
ily calculate the time necessary to reach such a state. How-
ever, if the initial condition itself is randomsusually the case
in biosensorsd other approaches should be explored. One ap-
proach proposed here provides a pessimistic approximation
for the settling time and is based on the analysis of all other
eigenvalues ofMn which are smaller than one. The upper
boundsworst case scenariod for the system settling time can
be calculated by the sum of all individual time constants
t1,t2, . . . ,tN−1, associated with the eigenvalues ofMn. If
MnPRN3N has eigenvaluesl1,l2, . . . ,lN−1, the worst case
time constanttT can be derived from

tT = o
r=1

N−1

tr = o
r=1

N−1
Dt

ulru
. s9d

Note that this approach is similar to the method of open
circuit time constantsszero value time constantsd,28 which is
used to estimate the bandwidth of specific linear circuits.

3. Power spectral density

To quantify the biological noise of the system, we need
to characterize the fluctuation of particles in every state, par-
ticularly statec, which the affinity sensors observe. To do
this at equilibrium, we need to first evaluate all autocorrela-
tion functions of the set of stationary processes described by
Xistd functions, where 1ø i øN is any state of the systems
and

Xistd = H1 if x̄std = v̄i

0 else,
J s10d

i.e., Xistd=1 if there is a particle at statei at timet, and zero
otherwise.RXi

std, the autocorrelation ofXistd, is then defined
as

RXi
std = EfXist + tdXistdg. s11d

The term under the expectation is nonzero only whenXist
+tdXistd=1. HenceRXi

std=ProbfXist+tdXistd=1g or

RXi
std = ProbfXist + td = 1uXistd = 1gProbfXistd = 1g.

s12d

By using the definition ofHnstd from s7d we have

RXi
std = hiisutudri,E, s13d

where ri,E=ProbfXistd=1g is the probability ofX being at
statei at equilibriumsextracted fromrEd andhüstd is the ith
diagonal entry ofHnstd. The PSD of this processSXi

sfd is the
Fourier transform ofs13d, where

SXi
sfd = ri,EE

−`

+`

hiisutude−j2pfdf. s14d

If we haven-independent particles we can still uses13d and
s14d to find the overall autocorrelation function of the num-
ber of particlesRni

std by

Rni
std = EFo

n
Xist + tdo

n
XistdG

= sn2 − ndEfXistdg2 + nRXi
std

= sn2 − ndsri,Ed2 + nhi,isutudri,E. s15d

Accordingly the unilateralssingle-sidedd PSD of the number
of particles in statei defined bySni

sfd is

Sni
sfd = 2psn2 − ndsrE,id2dsfd + 2nSXi

sfd. s16d

It is evident from s11d that the expected value of
n-independent particles in statei, EfonXig, becomesnri,E.
To find the variance of the same processsni

2 , we have

FIG. 4. General Markov model for affinity-based biosensors withN possible
states for the analyte particles including captured states.
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sni

2 = EFo
n

Xistdo
n

XjstdG − HEFo
n

XistdGJ2

= nri,Es1 − ri,Ed. s17d

Note that whiles11d–s17d are derived assuming a homo-
geneous processsno analyte-analyte molecular interactionsd,
the same methodology can still be used for inhomogeneous
processes if they have an equilibrium distribution. The only
necessary modification is that a transition matrix at equilib-
rium for the nonhomogeneous process, if any, must be put in
the formulations to find the respectivehiisutud function. This
method is essentially a linearization technique. Thus it is
valid only when the fluctuations in an existing equilibrium
concentration are very small compared to the average con-
centrationssmall signal approximationd.

III. ONE-DIMENSIONAL BIOSENSOR

A. Transition matrix

As a descriptive example which summarizes the behav-
ior of most biosensors, such as planar arrays and ion-
sensitive field-effect transistorsISFETd-based sensors,3,21 we
now consider a sensor structure with a cubic reaction cham-
ber of dimensionL. In this specific system, the probes are
only located at one side of the cube. As shown in Fig. 5, the
mass relocation processes are relevant in only one dimen-
sion. Hence, a one-dimensional Markov process withN+1
statessN=LDx−1d becomes an applicable model for analyte
motion. For very smallDt, the transition matrixMn becomes
very sparse since we can assume that each particle can only
move between adjacent states, e.g.,i and i +1. The value of
mi,i+1 in the general case can be formulated using the follow-
ing:

mi,i+1 = DDtiv̄i − v̄i+1i−2 + f i,i+1Dtiv̄i − v̄i+1i−1, s18d

whereD is the analyte diffusion coefficient,iv̄i − v̄i+1i is the
distance between statesi and i +1, andf i,i+1 is the effective
directional velocity fromi to i +1 contributed by local drift
and convection. In conventional affinity-based sensors the
f i,i+1 terms are generally designed to be zero since any net

drift or convection can possibly bias molecular capturing and
reduce specificity. In the presence of solution mixing, con-
vection is indeed present but since the induced mass reloca-
tion is deliberately set to be nondirectional andrandomwith
an average local velocity of zero, we can still consider
f i,i+1=0. The only modification necessary to the formulation
in s18d is an increase in the diffusion coefficient. Subse-
quently, in this paper we will assume thatmi,i+1 is location
independent and equal toDDtiv̄i − v̄i+1i−2.

The transition matrixMnPRsN+1dsN+1d with capturing at
the surface with kinetics as defined ins5d becomes

Mn = 3
1 − mc,0 m0,c 0 0

mc,0 1 − m0,c − kD kD ¯ 0

0 kD 1 − 2kD 0

A � A
kD

0 0 0 ¯ 1 − kD

4 , s19d

wheremc,0 andm0,c can be derived usings6d, and the value
of kD here can be estimated froms18d which becomes equal
to DDtDx−2,24,29 whereDx=1/2fYmg−1/3. In the probability
distribution vector of this systemrstd, the first entryrcstd is
the probability of being in the captured statec and the ones
after that fi.e., r0std ,r1std , . . . ,rN−1stdg correspond to the
probability of particles being in coordinate zero toN−1.

B. Equilibrium distribution

To find the equilibrium probability distribution we
should find the eigenvector associated with the eigenvalue of
one in s19d. By carrying out this procedure we can deduce
that the analyte probability distribution in the bulksstates
zero toN−1d becomes uniform, a result which from a physi-
cal point of view is legitimate since diffusion is the only
mass transport process in the bulk. If we haven analyte
particles in the system at equilibrium, the analyte concentra-
tion in statei of the bulkri,E becomes

ri,E = nS m0,c

mc,0 + Nm0,c
D = nS k−1

k1fYmg + Nk−1
D . s20d

Accordingly the concentration of captured particles becomes

rc,E = nS mc,0

mc,0 + Nm0,c
D = nS k1fYmg

k1fYmg + Nk−1
D . s21d

C. Settling Time

To find the settling time of the system described bys9d,
we are required to find the eigenvalues ofMn. It can be
shown that the matrixfI sN+1dsN+1d−Mng /Dt has all the eigen-
values ofMn, except for the ones which are equal to one.
Now if the describing function of this matrix is defined as
Fssd=detfsI−Mng, then froms19d we have

FIG. 5. An affinity biosensors structure with a cubic reaction chamber
where mass-transfer processes are only relevant in one dimension.
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Fssd = det3
s− k−1Dt k1fYmgDt 0 0

k−1Dt s− sk1fYmg + DDx−2dDt DDtDx−2
¯ 0

0 DDtDx−2 s− 2DDtDx−2 0

A � A
DDtDx−2

0 0 0 ¯ s− DDtDx−2

4 ,

=sN+1 + bN+1s
N + bNsN−1

¯ + b1s+ b0. s22d

We know that the sum of the reciprocals of the roots forFssd is equal to −b1/b0. Since reciprocals of rootsl1
−1,l2

−1, . . . ,lN−1
−1

are indeed the system time constants described ins9d, we havetT= ub1/b0u. For the one-dimensional system ins19d, it is
straightforward to show thatub1/b0u from s21d is

Ub1

b0
U =

2NsDDxd−2N−2Hsk1fYmg + DDx−2d + k−1 +
1

2
Nk−1sk1fYmg + DDx−2d + k−1sk1fYmg + DDx−2dDDx2J

2Nk−1sk1fYmg + DDx−2dsDDxd−2N−2 ,

=
1

k−1
+

1

k1fYmg + DDx−2 +
1

2

N

DDx−2 +
1

DDx−2 ,

=
1

k−1
+

1

k1fYmg + D/Dx2 +
Dx2

D
FN

2
+ 1G . s23d

Note that the values ofDx andN in s23d are not arbitrary
simulation variables but, in fact, have physical meaning. As
illustrated in Fig. 5,Dx is implicitly set to be the reactive
distance betweenX andY for a meaningful interaction esti-
mated from the saturation concentration ofY. Accordingly
for a given reaction chamber depthL, N is equal to
2LfYmg1/3. For most practical situations where dimensions of
the reaction chamber are much larger than the reactive dis-
tance betweenX andY such thatN@1, hence we have the
following approximation for settling timetT:

tT <
1

k−1
+

1

k1fYmg + 4DfYmg2/3 +
L

4DfYmg1/3. s24d

Equation s24d illustrates a few intuitive yet important
concepts.sid The settling time definition in systems with dif-
fusive mass relocation processessi.e., Brownian motiond re-
lies on the dimensions of the lattice size in the model.sii d As
anticipated from a physical point of view, a higher diffusion
coefficient results in faster settling time.siii d The release of
analyte particles represented byk−1 is independent of size of
the chamber and the diffusion coefficient.sivd If the size of
the chamber becomes extremely small or the diffusion coef-
ficient becomes really large, the settling time reaches a maxi-
mum value limited by the reaction kinetics.

D. Power spectral density

To find the power spectral density and the mean and
variance of the number of particles captured by such a pro-
cess we can employs14d in s16d. Yet another method, which
is suitable for this example, is to collapse theN+1 states into
only two significant states of equilibrium, the captured state

c and the free statec8. The transition probability froms1d for
c to c8 defined bymc,c8 is the same asmc,0 since that is the
only possible state the particle can go in the time intervalDt
from statec which is 0. However, for the reverse process,
i.e., going from statec8 to c, the transition probabilitymc8,c
is defined by

mc8,c = Probfx̄st + Dtd = v̄cux̄std Þ v̄cg,

=Probfx̄st + Dtd = v̄cux̄std = v̄0g

3Probfx̄std = v̄0ux̄std Þ v̄cg. s25d

which indicates that the transition occurs only when the par-
ticle is in state 0 at timet. The termmc8,c is derived using
r0,E andrc,E from s20d and s21d as

mc8,c = k1fYmgDt
r0,E

1 − rc,E
= k̂1Dt. s26d

where k̂1 is the effective association rate. Hence, the new
transition matrix for the collapsed systemM8 becomes

M8 =F1 − k−1Dt k̂1Dt

k−1Dt 1 − k̂1Dt
G . s27d

Accordingly
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H8std =
1

k̂1 + k−1

Fk−1 + k̂1e
−sk̂1+k−1dt k−1 − k−1e

−sk̂1+k−1dt

k̂1 − k̂1e
−sk̂1+k−1dt k̂1 + k−1e

−sk̂1+k−1dt G ,

s28d

and thereforeRnc
std, the autocorrelation function of the

number of the captured particles by utilizings15d and s28d
becomes

Rnc
std = sn2 − ndsrc,Ed2 +

nrc,Ek−1

k̂1 + k−1

+
nrc,Ek̂1

k̂1 + k−1

e−sk̂1+k−1dutu.

s29d

We know that whent→`, in s28dh11s`d→rc,E. Since

h11s`d=k−1/ sk̂1+k−1d, we can conclude thatrc,E=k−1/ sk̂1

+k−1d. Hences29d can be rewritten as

Rnc
std = snrc,Ed2 + nrc,Es1 − rc,Ede−sk̂1+k−1dutu. s30d

Subsequently, by usings29d, the single-sided PSD defined in
s16d becomes

Snc
sfd = 2psnrc,Ed2dsfd

+
4nrc,Es1 − rc,Ed

sk̂1 + k−1df1 + s2pfd2/sk̂1 + k−1d2g
, s31d

which demonstrates a Lorentzianssingle-poled profile for the
PSD of the number of captured particles. The 3dB bandwidth
of the inherent noise PSD in this system represented byf3dB

is accordingly located atsk̂1+k−1d /2p.

E. Signal-to-noise ratio

To find the signal-to-noise performance of such a system
in equilibrium, we should firstly identify the signal as well as
noise sources. If the biosensor system is designed to measure
the analyte concentration in a reaction chamber and the
transduction process only observes captured particles, we can
define the signal to be the number of particles in statec. The

measurement noise in the absence of any transduction noise
sdetector noised is then merely generated from the fluctua-
tions of the number of analyte particles in statec. In this case
the SNR is defined as the signal power divided by the noise
power. The signal power issnrc,Ed2 and noise power is ex-
pressed ins17d. Hence

SNRQL =
snrc,Ed2

nrc,Es1 − rc,Ed
= n

rc,E

1 − rc,E
. s32d

Equation s32d denotes the maximum possible SNR in the
absence of any transduction noise and is generally referred to
as the quantum-limited SNR, represented by SNRQL. When
the transducer is noisysgenerally always the cased, the over-
all SNR should also take into account the added noise of the
transducer. If this excess noise is independent of the mass
relocation and capturing processes and has the variance ofsT

2

referred to the number of the captured particles, we have

SNR =
snrc,Ed2

nrc,Es1 − rc,Ed + sT
2 . s33d

In most practical cases for biosensors, analytes are not
the only particles which can be captured by the probes. For
instance, in hybridization-based DNA detection systems, be-
side the target DNA fragment, other sequences of DNA in
the solution might also bind to the probe with less probabil-
ity than of the target. This problem is a consequence of im-
perfect binding sites and generally referred to as the detec-
tion specificity. For an ideal biosensor platform in which the
sensing area has infinite capacity for particle capturingsno
saturationd, we are able to calibrate the amount of unspecific
capturing by simply subtracting the expected number of un-
specific particles from the signal. Nevertheless, the noise
caused by these probabilistic yet unspecific particles still ex-
ists. If ñ background particles exist in the system, where
each can bind to the sensor surface with probability ofr̃c,E,
the new SNR expression becomes

TABLE I. The closed-form approximations for the statistical characteristics of a one-dimensional biosensor
structure.

Biosensor specification Closed-form approximation

Settling time constant 1

k−1
+

1

k1fYmg + 4DfYmg2/3 +
L

4DfYmg1/3

Expected number of analyte
particles captured by the
binding sites

nrc,E = nS k1fYmg
k1fYmg + Nk−1

D
Power spectral density of
captured particles 2psnrc,Ed2dsfd +

4nrc,Es1 −rc,Ed

sk̂1 + k−1df1 + s2pfd2/sk̂1 + k−1d2g

Quantum-limited SNR
n

rc,E

1−rc,E

SNR in presence of unspecific
binding and transducer noise

snrc,Ed2

nrc,Es1−rc,Ed+ ñr̃c,Es1−r̃c,Ed+sT
2

SNR with K-independent
measurements

Ksnrc,Ed2

nrc,Es1 −rc,Ed + ñr̃c,Es1 − r̃c,Ed + sT
2
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SNR =
snrc,Ed2

nrc,Es1 − rc,Ed + ñr̃c,Es1 − r̃c,Ed + sT
2 , s34d

given that background particles can take part in transduction
process exactly the same way as the analyte particles.

The SNR values ins32d–s34d are for single observations,
but in some biosensor platforms multiple samples in time can
be acquiredsequivalent to low-pass filtering for continuous
signalsd. If these samples are independentse.g., many 1/f–3dB

time samples apartd, then forK samples SNR is increased by
a factor ofK. In Table I, we have summarized the closed-
form results derived in this section, which predicts the sto-
chastic behavior of one-dimensional affinity-based biosen-
sors.

IV. NUMERICAL EXAMPLE

As a practical example, we analyze the stochastic char-
acteristics of an ISFET device for electronic detection of
DNA hybridization.14 The structure of this specific biosensor
consists of a planar field-effect sensing element at the bottom
of the reaction chamber with depth ofL ssee Fig. 6d. The
detection occurs when the charged analytessDNA in this
cased are captured by the probes which have complementary
sequences. Since the analyte is intrinsically a charged par-
ticle, binding can create a surface potential change which
alters the double layer capacitance of the interface. Capaci-
tance changes in the gate of the FET device change the
charge profile of the channel, modulating the drain-source
current, which results in detectable electronic output signals.

In this electronic biosensor platform, diffusion is basi-
cally the only mass transport process of the analyte in the

solution since externally induced drift processes reduce the
specificity of the hybridization. The diffusion coefficient of
the target moleculesanalyted, a single strand 20 base-pair
DNA in this example, defined byDt is estimated to be 1.5
310−6 cm2/s, and fXg, the nominal concentration of the
DNA, is set to be 0.1 nMs<631010 molecules/cm3d, a de-
tectable concentration in fluorescence-based microarray plat-
forms. The approximate binding kinetic rates as well as the
simulation specifications are mentioned in Table II. Note that
the time incrementsDt=4.7 msd is set to its maximum allow-
able value such thatkD=1/2.

The first step in analyzing this biosensor is to create the
transition matrix described bys19d, assuming thatL =6 mm
s101 states in the Markov model including captured stated.
Equation s21d suggests that only 2.93% of the DNA mol-
ecules in average will bind to the surface at equilibrium. The
settling time froms24d is always less than 0.2 s. In Fig. 7, we
plotted the result of a Monte Carlo random-walk simulation
of 1000 particles in the system for the duration of 0.6 s along
with the predictions froms21d and s24d. The settling time
approximation calculated froms24d sets upper and lower
bounds for the quantity of captured analytes. One bound as-
sumes that all 1000 DNA molecules are captured initially,

TABLE II. Specifications of ISFET biosensor for electronic detection of
DNA hybridization.

Parameter Simulation value

DNA diffusion coefficientsDtd 1.5310−6 cm2/s
DNA concentrationsfXgd 0.1 nm
Forward binding ratesk1d 33107 M−1 s−1

Reverse ratesk−1d 5 s−1

Probe saturation concentrationsfYmgd 1 mm
Transduction noise PowerssT

2d 1 molecule2

Simulation lattice sizesDxd 60 nm
Simulation time incrementsDtd 4.7 ms

FIG. 6. An electronic DNA hybridization sensor where
the ISFET device detects the binding incidents. When
charged DNA strands bind to their complementary
structuressi.e., binding sitesd of the sensing area, the
charge profile in the channel is modified. Subsequently,
the induced change in channel transconductance is elec-
tronically quantified and associated with DNA binding.

FIG. 7. Transient simulation results of the DNA biosensor where analyte
number is 1000. A Monte Carlo random-walk simulation is carried out with
three initial distributions. The lower and upper bounds are calculated using
s24d, and the asymptotic value is derived froms21d.
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whereas the other assumes that all reside in the bulk solution
with a uniform distribution. The responses within these
boundaries correspond to Monte Carlo simulation results
given different initial conditionss0%, 50%, and 100% cap-
tured initiallyd. The results show the applicability of closed-
form solutions, since the transient result all converge faster
than the settling time bounds toward an asymptotic value,
which suggest 29.3 molecules are in average captured at
equilibrium.

Next we look at the fluctuation of the number of cap-
tured particlessbiological noised at equilibrium. Froms31d
we predict a Lorentzian noise PSD with an amplitude pro-
portional to the number of particles in the solution. In Fig. 8
we have plotted the predicted PSD as well as the simulated
results forn=1000 andn=10 000. Again, the predicted PSD
clearly matches Monte Carlo simulations verifyings31d.

In Fig. 9, we illustrate the theoretical SNR computed

using s33d versus the settling time approximation given in
s24d, assuming that the system is isomorphically scaled
down, i.e., the reaction chamber in all dimensions is scaled.
The analyte concentration in this example is kept constant to
0.1 nM. This graph indicates that smaller sensors have faster
settling time and reach equilibrium more quickly. However,
the SNR of such systems decreases, which suggests a funda-
mental trade-off between SNR and speed of affinity-based
biosensors. This can in turn impose a basic limitation on the
size of the sensors for practical applications. Note that for
dimensions less than 6mm in this example, the SNR be-
comes extremely low, given that the number of analyte par-
ticles in the chamber turns out to be very small. This is, in
fact, known to be a limitation in many microfluidic analytical
systems.30

V. CONCLUSION

The signal observed in an affinity-based biosensors is a
function of captured analyte particles by the corresponding
recognition sites and the selective probes. The probabilistic
motion and interaction of particles results in a random signal
fluctuationsbiological noised, which is observed along with
transducer noise. We have shown that the random component
of signal has a Lorentzian power spectral density and its
amplitude is proportional to the concentration of captured
particles. The observed signal-to-noise ratiosSNRd of these
systems also decreases as the system is isomorphically scaled
down, while the system’s speed increases. Additionally, we
have analytically calculated the general SNR of such sensors
and derived the quantum-limited SNR, which denotes an un-
avoidable uncertainty for each measurement. The methods
presented in this paper can be applied to the design of vari-
ous sensory systems, specifically low-noise biochemical de-
tectors with micro- and nanoscaled transducers. Based on
these models, one can also derive a variety of estimation
techniques to better detect analytes in biosensors.
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