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We study the statistical behavior of affinity-based biosensors. The detection uncertainty and noise in
such devices originates primarily from probabilistic molecular-level bindings within the sensing
regions, and the stochastic mass-transfer processes within the reaction chamber. In this paper, we
model the dynamic behavior of these sensory systems by a Markov process, which enables us to
estimate the sensor inherent noise power spectral deis$y) and response time. We also present

the methods by which the Markov parameters are extracted from the reaction kinetic rates, diffusion
coefficients, and reaction chamber boundary conditions. Using this model, we explain why Poisson
shot noise has been reported in such biosensors and additionally predict a Lorentzian profile for the
fluctuation PSD. Furthermore, we demonstrate that affinity-based biosensors have a
quantum-limited signal-to-noise rati6SNR). We also show that the SNR decreases as the
dimensions are isomorphically scaled down while the biosensor response speed increases,
substantiating a fundamental trade-off between biosensor speed and accu2@y5 @merican
Institute of Physic§ DOI: 10.1063/1.1861970

I. INTRODUCTION However, the focus of this paper is the stochastic analysis
and quantification of the first two steps which as we will

In the past decade, molecular biology has moved fromdemonstrate, is the dominant source of noise in most sys-

being exclusively a research tool in life sciences to havingems. Little work has been reported on this subject and this

practical applications in the main stream of medicine. This isstudy models théviological noise of affinity-based biosen-

mainly due to the capabilities of the existing molecular biol-sors.

ogy detection platforms, which enable researchers to study Generally speaking, the detectable signal in all conven-

and analyze biological molecules much more efficiently andional sensory system@ncluding affinity-based biosensgrs

if required, in a high-throughput fashion. is generated by the aggregate contribution of individual
Today, there are a variety of different detection platformsevents(e.g., collision, absorption, emission, g¢tariginating

in molecular biology. One of the conventional and widely from probabilistic microscopic systems. In electronic and

used techniques is affinity-based sensing. A technique whichptoelectronic sensors, for example, the microscopic compo-

incorporates a biological or biologically derived sensing el-nents of the systems are electrons and photons within solid-

ement either integrated within or intimately associated withstate matter. Accordingly, the dynamical behavior of such

the physiochemical transduceThese sensory systems take

advantage of the selectivity and specificigffinity) of bio- Aqueous Solution " ;
molecular interactions, such as DNA-DNA hybridization in Analyte Particle Q 0
gene chip% or antibody-antigen interactions in immuno- ¢
assay$.Independent of the molecules involved, detection in Collided Particle

affinity-based biosensors calls for the following fundamental

steps(see Fig. X (i) analyte molecules within the reaction Sensing Area

chamber collide with the capturing sitgsobes, (ii) the two Binding Site

species form a chemical bond, and ultimatéli) they take Solid Support

part in a measurable transduction process. From a physical
point of view, all affinity-based biosensors share the first two

steps, whereas the third step may differ among platforms. é ®
The transduction processes can be triggered by either the T o>
intrinsic characteristics of analyte, such as charge in ion- Detectable , ‘o

sensitive detection devic&$,or an extrinsic entityreporter o

molecule physically attached to the analyte, such as fluores-
cent spectroscopy labeldn general, the fidelity of the bio-
sensor in terms of signal-to-noise ratiNR) is a function of
the uncertainty(noise of all of the aforementioned steps.

FIG. 1. Detection in affinity-based sensors requi@scollision of analyte
particles with the binding sites followed ki) analyte capturing and trans-
dElectronic mail: arjang@stanford.edu duction processes.
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system, characterized by the expected response and the spc "z M Mo m, My

= 0 mt,c

taneous fluctuatiotnoise, can be characterized by statistical . () m; m,,m () . () m, () m,, ()

mechanical methods described for electrons and phgt%ns. .- @. .® - - o o.e
my; "y, m_,

In affinity-based biosensors on the other hand, the micro- o Mo,

scopic components of the system are not small particles like Av <

electrons anymore; they are molecules. Since molecules ar Ll
large-scale quantum-mechanical enti]t?e$ystems with a Ll t;_ () Binding
large number of discrete stajefor the purpose of stochastic “5 ) reAnalyle Bl ! :Slte
analysis, we can still apply similar approaches used for elec: e A‘,I'g' ),

tron devices'? Quantum chemical and biological systems
are essentially more complicated than quantum electronic
systems; nevertheless, because of their similarity at the el
emental level, we anticipate signal-dependent fluctuations ir
the form of Poisson shot noise, which is common in many
solid-state optoelectronic devic®n this study, we examine  * @ % ()

this similarity, show its biophysical origin, and comprehen- FIG. 2. Markov model for(a) probabilistic motion in the reaction chamber

sively quantify its behavior in affinity-based biosensors.  and(b) motion in the presence of immobilized binding sites. Each coordi-
It is important to realize that affinity-based biosensorsnate corresponds to a state in the process where particles can move into or

essentially comprise of considerably less number of probabi€ave-x(t) represents the location of the analyte particle at timad v;

.. . . defines the coordinates of the state the system.

listic particles compared to optoelectronic sensors. Thus, the

mesoscopic signal fluctuatidibiological shot noisequanti-

fied in this paper is expected to be observed in much largdiuctuations of a particle from a microscopic point of view

dimensions. This observation has been previously reported ifpllow the characteristics of a typical random-walk proééss

DNA microarrays platform® as well as in many other (i.e., Brownian motiol which results in a diffusive spread-

affinity-based transducet$=*® In addition, we predict that ing in macroscopic systems.

this type of noise, i.e., biological shot noise, will become It is challenging to statistically follow the motion of each

significantly more important because of the trend towardnolecule in the general case using continuity equation for-

implementation of small-scale microfabricated affinity-basedmulation. However, we can consider a Markov profess

biosensors® 2 The analytical results of this paper can con-model the particle stochastic behavior within the reaction

ceivably aid the sensor designer in better understanding thehamber. In this model, each state of the process corresponds

fundamental trade-offs among scaling, SNR, and responde a fixed coordinate within the reaction chamfieig. 2(a)].

time. The transition probabilities are subsequently defined as the
To comprehensively study the SNR of affinity-based bio-probability analyte particles moving from each coordinate

sensors, initially in Sec. Il, we introduce the mathematical(statg to the other in a sufficiently small time intervatt.

methods to model the statistical behavior of analyte capturThe main advantage of this type of modeling is the stochastic

ing, considering the binding kinetics and the mass-transfepature of the model, which calculates the probability distri-

processes using a Markov model. We will explain how thebution function(pdf) of the analyte particles. Additionally,

model can be applied to extract a closed-form noise solutiowe can easily derive the expected behavemsemble aver-

and settling time approximation in Sec. Ill. Additionally, we age of the system, a quantity that is generally calculated

derive the quantum-limited SNRlefined as the maximum using continuity-based equation formulation.

achievable SNRof these systems in both the presence and  For two arbitrary coordinates; andv; in the system,

absence of the transducer noise. As a practical numeric&épresented by statésandj, the state transition probability

example, which verifies the accuracy of the predicted result§fom statei to j for an analyte particle in time intervait is

we utilize the stochastic model to investigate the behavior oflenoted by

a hybridization-based DNA sensor in Sec. IV. The theoretical _ =

prediction for noise calculated in this paper essentially m;; = Protix(At) =v;[x(0) =v]. (1)

proves the existence of biological shot noise with a Lorentwherex(0) and x(At) specify the coordinate of an analyte

Reaction
Chamber

zian power spectral densitSD). particle at times 0 andt, respectively. The particle transi-
tion matrixM can be constructed, where if¢h elemenim; ;
Il. BIOSENSOR STOCHASTIC MODEL is defined in(1) (M e RN*N and N is the total number of

states. In such a system if the analyte particle has the prob-
ability distribution ofp(0) at time zero across the state space,
Molecules, cells, and many other analytes immersed iwherep(t) e R for all t, at At we have

the aqueous reaction chamber of biosensors are subject to _

thermal fluctuations and h i . PAY=Mp(0). @
, perhaps on particular sensory plat

forms, subject to electromagnetic or mechanical forces. Typical biosensor structures have a number of analyte

While mechanical movemerie.g., convectionand electro-  particles within the reaction chamber. Provided that the mo-

magnetic forcege.g., electrophoresisre in some sense de- tion of analyte particles is statistically independevit,and

terministic, thermal fluctuation is random in nature. Thermalp(t) become independent, resulting in a homogeneous Mar-

A. Analyte motion
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kov process. Note that this is, in fact, a realistic model for Reaction
most biosensors since statistical motion in such systems is ¢ Chamher
only governed by the analyte particles interaction with the A Y
solution molecules and not by analyte-analyte interaction. In ¥ Binding Molecule
this scenarida homogeneous Markov procgsge can cal- ~
culate the spatial probability distribution of the analyte par-  J= ‘

ticles in all time increments dividable by, given the initial A >

X

distribution p(0), such that
plkAD) = Mp(0), 3 ”;( ~
S

wherek is an integer number. If we have particles in the )—
system we can also define a spatial concentration distribution 4
of the particlesC(t), whereC(t)=np(t). Exact formulations

like (3) can be implemented fd&Z(t), except for the transition s
matrix that might become a function of which is defined [Y,]
asM,. In this general case we have

np(KAt) = C(kAt) = MKC(0) = nMKp(0). (4) - ,.<

Matrix M (or M,) can theoretically be estimated for any — -------- DA .
small time incrementAt, given the exact statistics of the L< @l
mass transport process described by the continuity : ;
equatior?* e Aty
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B. Analyte capturing

R
o R

Now that we have a statistical model of mass relocation
within the solution, we need to incorporate the boundary
. . . (b)
conditions of the reaction chamber. The boundary conditions
for conventional biosensors are either purely reﬂegtmert FIG. 3. When the concentration of binding molecul¥s,] is high enough
walls of the chamber and the surface of the solytionse-  that the reaction kinetics becomes insensitive to its increase, we practically
lectively absorbingsurfaces where probes ejisincorpora- ~ ensure thata) every analyte molecule has effectivelyYamolecule in its
- - : : - _proximity. This is equivalent in average ib), a system where eacl
t|_0n of reﬂeCtlv_e b_oundarles Into the Markov _mOdEI IS car molecule occupies a volume equal[tg,]™%, and analyte molecules have a
ried out by assigning zero probability for particles to movereactive distance afix=1/2Y,,] 3.
beyond boundaries. However, for selective absorption we
need to have a probabilistic model of the collision and inter-
action process. Mo = K_1At, (6)
Analyte collision with the binding sites results in differ-
ent possible outcomegreactive, elastic, and inelastic
collisions.?® As a result, we can introduce a probabilistic wherem; o andmg . are also defined as the association and
model to describe the specific binding of an analyte particlelisassociation probabilities ar®Y,,] is the saturation con-
X to a single prober in an affinity-based sens@Fig. Ab)].  centration of Y in (5). The physical justification for(6)
To begin with, we assume thatis confined(immobilized  omes from the fact that in the bulk-phase saturation concen-

within a certain coordinatée.g., state ) which is valid for tration of Y, we ensure that aK particles are effectively in
most biosensor structures. Now we can state that any meanr o sroximity ofY moleculegFig. 3@)]. In this case indi-
ingful interaction betweerX and Y at timet only occurs P y 9: )

J— — H _l .
when x(t)=v, (i.e., moleculeX is in intimate proximity of vidual' Y molecules on average occupy'¥,] ™ volume[Fig.

Y). If the bulk-phase reaction betwegnand Y species has 3(P)] which is equiv?ll?snt to when(t)=v, in the Markov
the association rate, and disassociation rate &f,, where ~Modelif Ax=1/2Y,,]™"= Consequently, the reaction rate of

A
A
o
A

(symbol[ ] indicates concentration X at state 0 should have similar kinetics as wh#&h,] in
Ky kg bulk phase, which results if6). It is imperative to under-

X+Y < XY stand that we can use the macroscopic r&teand k_; to
d[XY] , (5  definem,, andmg only when individual molecule binding
gt - KalXIY]-k-lXY] incidents are statistically independedt is small enough

that all entries inM, are much smaller than one, aid is
we can apply the following approximation to find the transi- equal to 1/2Y,,]-3. Using(6) for absorbing boundaries and
tion probabilities between captured statef the analyte and  (4) for the mass relocation and reflection cases, we can sta-
the collided state 0: tistically analyze the biosensor structure in its entiredge
M o= Ky[ Y AL, Fig. 4).
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N-1 N-1 At
TT=ETr=Em- 9
r=1 r=1 r

Note that this approach is similar to the method of open
circuit time constantézero value time constant& which is
used to estimate the bandwidth of specific linear circuits.

..........
B

3. Power spectral density

X :‘lreeg‘iioel:e:ls;zle,;:analytes To quantify the biological noise of the system, we need
to characterize the fluctuation of particles in every state, par-
FIG. 4. General Markov model for affinity-based biosensors Withossible  ticularly statec, which the affinity sensors observe. To do
states for the analyte particles including captured states. this at equilibrium, we need to first evaluate all autocorrela-
tion functions of the set of stationary processes described by
C. Stochastic analysis X;(t) functions, where £i<N is any state of the systems

1. System equilibrium distribution and

It is important to realize at this point that the transition Xi(t) = 1 if x(® =v, (10)
matrix M,, can be utilized to inspect various characteristics 0 else,
of the system without the need of applyif® and(3) for .

numerical simulation. We can easily prove that the genera'l'e"Xi(t):l if there is a particle at stateat timet, and zero

solutionp(t), which defines the analyte distribution at time otherW|se.RXi(T), the autocorrelation oki(1), is then defined
given initial conditionp(0), is derived using the following’

p(t) = exp[M, = 1At )p(0) = Hy(H)p(0), )

The term under the expectation is nonzero only whe(t
wherel is the unity matrix with the same dimensionsMsg. +7)X;(t)=1. HenceRy (7)=Prolf X;(t+n)X;(t)=1] or
Matrix H,(t) advances the initial distribution in time and can '
be calculated using the matrix exponential function, which in ~ Rx,(7) = ProtiX;(t+ 7) = 1Xi(t) = 1]Prokf X;(t) = 1].
effect exponentiates eigenvalues of the matrix. We can dem- (12)
onstrate that the stochastic model for a biosensor system with
n analyte particles and no analyte sink or source terms beBY using the definition oH(7) from (7) we have
comes a (_:Iosed homogeneous Markov process wWiigrieas Ry (7) = hi(|)pie. (13)
a single eigenvalue equal to one. All other eigenvalugd of '
are less than one, ensuring a single equilibrium mode assvhere p; ¢ =ProlfX;(t)=1] is the probability ofX being at
ciated with a single equilibrium distributiopy described by  statei at equilibrium(extracted fronpg) andhy(7) is theith
the eigenvector of the largest eigenvalue. It can be showdiagonal entry of (7). The PSD of this procesﬂ(f) is the
thatM,, andH(t) sharepe such that Fourier transform of13), where

Ry (7) = E[Xi(t+ DXi(t)]. 11

+0oo

pe = Hn(0pe. ® Sy (f) = pie f hi(|)e??mdf. (14)

—00

If we haven-independent particles we can still uge3) and
2. Settling time (14) to find the overall autocorrelation function of the num-

i i ) o ber of particleskR,, (7) by
The next logical question to ask is how long it will take !

for the system illustrated in Fig. 4 to reach equilibrium. If the Rn(7) = E[E Xi(t+ T)E xi(t)]
initial analyte concentration is known, usifig) one can eas- ' n n

ily calculate the time necessary to reach such a state. How- = (n2 = N)E[X;() ]2+ nRy.(7)
ever, if the initial condition itself is randorfusually the case ! %
in biosensorsother approaches should be explored. One ap- =(n’- n)(pi,E)2+ nh;i(|7)pi - (15)

proach proposed here provides a pessimistic approximation ) , , )

for the settling time and is based on the analysis of all otheficcordingly the unilateralsingle-sidedi PSD of the number
eigenvalues oM, which are smaller than one. The upper Of Particles in state defined byS, (f) is

bound(worst case scenaidor the system settling time can S, (f) = 2mm(n2 = n)(pg ) 28(f) + 2nSy (f). (16)
be calculated by the sum of all individual time constants ' ' '

T, T2, ... ,Tn-1, @SSociated with the eigenvalues Mif,. If It is evident from (11) that the expected value of
M, e RN*N has eigenvaluesy,\,, ... Ay-1, the worst case n-independent particles in state E[S,X;], becomesp; e.
time constant can be derived from To find the variance of the same proceéiﬁ we have
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I=kp—m,, 12k, drift or convection can possibly bias molecular capturing and
l-m,, __ m,, () k, reduce specificity. In the presence of solution mixing, con-
.°.°.° vection is indeed present but since the induced mass reloca-
m, kp tion is deliberately set to be nondirectional alatidomwith
Reaction ol an average local velocity of zero, we can still consider
7 y s . .
Chamber /:/ » fii+1=0. The only modification necessary to the formulation
o ¥ in (18) is an increase in the diffusion coefficient. Subse-
B'“gi't"ei . e quently, in this paper we will assume that ., is location
P e independent and equal DAt|[v;—v;,| ™%
° The transition matrixM,, e RNDN*D with capturing at
b the surface with kinetics as defined () becomes
s _ _
i 1- Mco Mo 0 0
k—i
fo—2 L | Meo 1-Moe—kp  kp 0
_ 0 kD 1 - 2<D 0
FIG. 5. An affinity biosensors structure with a cubic reaction chamberMn = . . . (19
where mass-transfer processes are only relevant in one dimension. :
Kp
2 0 0 0 - 1=k
7 =E[Ex0Z x0] —{E[E xm]} - 0
n n n

wherem, o andmg . can be derived using), and the value
=npie(1-pig). (17 of kp here can be estimated frofh8) which becomes equal

Note that while(11)~(17) are derived assuming a homo- © D.AtA.X_Z*M'Zg WhereA'le/qu]_m- In the probability
geneous processo analyte-analyte molecular interactipns d'St”bUtlon_\(ECwF Of_ thl§ system(t), the first entryp.(t) is
the same methodology can still be used for inhomogeneou$!® Probability of being in the captured statand the ones
processes if they have an equilibrium distribution. The oniyafter that[i.e., po(t),ps(t), ... ,pn-2(t)] correspond to the
necessary modification is that a transition matrix at equilip-Probability of particles being in coordinate zeroNo-1.
rium for the nonhomogeneous process, if any, must be put in
the formulations to find the respectivg(|7]) function. This
method is essentially a linearization technique. Thus it isB. Equilibrium distribution
valid only when the fluctuations in an existing equilibrium

concentration are very small compared to the average con- To T'nd the_ equilibrium pro_bablllty_ d'St”bL_’t'on we
centration(small signal approximation should find the eigenvector associated with the eigenvalue of

one in(19). By carrying out this procedure we can deduce
that the analyte probability distribution in the bu(ktates
zero toN-1) becomes uniform, a result which from a physi-
cal point of view is legitimate since diffusion is the only
mass transport process in the bulk. If we havenalyte

As a descriptive example which summarizes the behavparticles in the system at equilibrium, the analyte concentra-
ior of most biosensors, such as planar arrays and iontion in statei of the bulkp; ¢ becomes
sensitive field-effect transistdfSFET)-based sensofe:! we
now consider a sensor structure with a cubic reaction cham- Mo _ k_q
ber of dimensiorL. In this specific system, the probes are ~ PiE~ n<mco+ NmOC) B n<k1[Ym] + Nk—1>' (20)
only located at one side of the cube. As shown in Fig. 5, the ' '
mass relocation processes are relevant in only one dimemnxccordingly the concentration of captured particles becomes
sion. Hence, a one-dimensional Markov process Wthl
states(N=LAx™1) becomes an applicable model for analyte . ( Meo ) ~ ( A )

PeE™ Mo+ NMg ¢  \Kg[Yin] + Nk )

Ill. ONE-DIMENSIONAL BIOSENSOR

A. Transition matrix

motion. For very small\t, the transition matrisM,, becomes (21
very sparse since we can assume that each particle can only
move between adjacent states, e.qndi+1. The value of

m; j+1 in the general case can be formulated using the follow-

INg: C. Settling Time

DAt = DadlF2 4 f At = DL
M a1 = DAYo; = Diaa[ 7+ i 2 Aoy = w3l (18) To find the settling time of the system described(By,

we are required to find the eigenvalues Mf,. It can be
distance between statesndi+1, andf; ., is the effective ~ shown that the matrikl .1)n+1~M,]/At has all the eigen-
directional velocity fromi to i+1 contributed by local drift values ofM,, except for the ones which are equal to one.
and convection. In conventional affinity-based sensors th&low if the describing function of this matrix is defined as
fii+1 terms are generally designed to be zero since any nét(s)=defsl-M,], then from(19) we have

whereD is the analyte diffusion coefficienfy;-v;,4| is the
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S— k_lAt kl[Ym]At O 0
koAt s—(kYn]+DAX?At  DAtAx2 .- 0
0 DAtAXx 2 s— 2DAtAX 2 0
F(s) = det ‘ } ) ,
DAtAX 2
0 0 0 .-+ s—DAtAX?
:SN+1 + bN+lsN + bNSN—l. S b]_S+ bO' (22)

We know that the sum of the reciprocals of the rootsFi¢s) is equal to ,/b,. Since reciprocals of roots;*, A%, ... Ay
are indeed the system time constants describe@)inwe haver;=|b,/by|. For the one-dimensional system (h9), it is
straightforward to show thab,/by| from (21) is

1
2N(DAx)‘2N'2{(kl[Ym] +DAX %) +k_ + ENk_l(kl[Ym] +DAX?) + K (ke[ Y] + DAx'z)Dsz}

by|
by| 2VK_1(Kq[ Y] + DAX2)(DAX) N2 :
1 1 1 N 1
=+ + = + ,
ko kqYn]+DAXx2 2DAx? DAx™?2
—i+;+A—X2 Ny (23)
“ky k[Yn]+D/IAX?2 D |2 '

Note that the values afx andN in (23) are not arbitrary ¢ and the free state’. The transition probability fron(l) for
simulation variables but, in fact, have physical meaning. A to ¢’ defined bym, . is the same am, since that is the
illustrated in Fig. 5,Ax is implicitly set to be the reactive only possible state the particle can go in the time inteAtal
distance betweeX andY for a meaningful interaction esti- from statec which is 0. However, for the reverse process,
mated from the saturation concentrationYaf Accordingly  i.e., going from state’ to c, the transition probabilityn .
for a given reaction chamber depth, N is equal to is defined by
2L[Y.,]*3. For most practical situations where dimensions of
the reaction chamber are much larger than the reactive dis-
tance betweeX andY such thatN> 1, hence we have the Mer ¢ = Prolx(t + At) = v [x(t) # v,

following approximation for settling time-: —ProfxX(t + At) = ogx(t) = vg]
= =0 =g

1 L _ _
T T k[Yo] + 4D[Y PR T D[y 9 PrO(0 = w00 # vel. 29

Equation (24) illustrates a few intuitive yet important
concepts(i) The settling time definition in systems with dif-
fusive mass relocation procesdés., Brownian motioh re-
lies on the dimensions of the lattice size in the model As
anticipated from a physical point of view, a higher diffusion
coefficient results in faster settling timgii ) The release of
analyte particles represented ky; is independent of size of Mer o = Kq[ Y] At
the chamber and the diffusion coefficiefit;) If the size of
the chamber becomes extremely small or the diffusion coef-
ficient becomes really large, the settling time reaches a max
mum value limited by the reaction kinetics.

which indicates that the transition occurs only when the par-
ticle is in state O at timé. The termm,, . is derived using
pog andp. g from (20) and(21) as

PoE _ — At (26)
1 ~ PcE

{vhere IA<1 is the effective association rate. Hence, the new
transition matrix for the collapsed systevty becomes

D. Power spectral density

To find the power spectral density and the mean and . 1-kaAt kAt
variance of the number of particles captured by such a pro- - koAt 1-k,At '
cess we can emplojl4) in (16). Yet another method, which

is suitable for this example, is to collapse the 1 states into

only two significant states of equilibrium, the captured stateAccordingly

(27)
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TABLE I. The closed-form approximations for the statistical characteristics of a one-dimensional biosensor
structure.
Biosensor specification Closed-form approximation
Settling time constant 1 1 L
—+ +
Koy Kal Yol +4D[Y - 4DLY ]
Expected number of analyte ( K[ Yin] )
; Npee =Nl ————
p_art|f:|es F:aptured by the PeE K[ + NK_;
binding sites
Power spectral density of Anpee(l=pee)
captured particles 2m(npce)*alf) +— ' "~
plured part ) (ky K p)[L+ (2 (ky + )]
Quantum-limited SNR n PcE
l_pc,E
SNR in presence of unspecific (Npce)?
binding and transducer noise Npee(1—peg) +Tipee(1-Pe) + 02
SNR with K-independent K(npee)?
measurements Npce(L=pee) + pee(l—Pog) + 0F
K+ f(le_(f(ﬁk_l)f k- k_le-(kl+k_l>7 measurement npise in the absence of any transduction noise
H'(7) =< L . " (detector noiseis then merely generated from the fluctua-
ky+kog| ky—kge ke kg +ketathdr tions of the number of analyte particles in statén this case

(28)

and thereforeRnc(r), the autocorrelation function of the
number of the captured particles by utilizitig5) and (28)
becomes

Ry, (1) = (0 = ) ()2 + 202 4 Pt oy
¢ ky+ko, kyt+k.g

(29)

We know that whenr—, in (28)h;y(*)—p.e. Since
hiy()=k_1/(ky+k_), we can conclude thagb.g=K_,/(k;
+k_;). Hence(29) can be rewritten as

Rnc(T) = (npc,E)2 + npc,E(l - Pc,E)e_(IA(l+k_l)‘T‘- (30)

Subsequently, by usin@9), the single-sided PSD defined in
(16) becomes

Sy () = 2m(npge)2alf)

4npc,E(l - Pc,E)
(ky + K [ + (275 (ky + k)?]

+ (31)

which demonstrates a Lorentzigsingle-pole profile for the

the SNR is defined as the signal power divided by the noise
power. The signal power ifp.g)? and noise power is ex-
pressed in17). Hence

(nPc,E)2 - Pc,E
nPc,E(l - Pc,E) 1- PcE

SNRy = (32)

Equation (32) denotes the maximum possible SNR in the
absence of any transduction noise and is generally referred to
as the quantum-limited SNR, represented by §NRVhen

the transducer is noisigenerally always the cagdhe over-

all SNR should also take into account the added noise of the
transducer. If this excess noise is independent of the mass
relocation and capturing processes and has the varianffp of
referred to the number of the captured particles, we have

(npc,E)2
an,E(l _Pc,E) + 0"?'

SNR = (33

In most practical cases for biosensors, analytes are not
the only particles which can be captured by the probes. For
instance, in hybridization-based DNA detection systems, be-
side the target DNA fragment, other sequences of DNA in

PSD of the number of captured particles. The 3dB bandwidthhe solution might also bind to the probe with less probabil-

of the inherent noise PSD in this system representet} fy
is accordingly located atk;+k_;)/ 2.

E. Signal-to-noise ratio

ity than of the target. This problem is a consequence of im-
perfect binding sites and generally referred to as the detec-
tion specificity. For an ideal biosensor platform in which the
sensing area has infinite capacity for particle captufimy
saturation, we are able to calibrate the amount of unspecific

To find the signal-to-noise performance of such a systencapturing by simply subtracting the expected number of un-

in equilibrium, we should firstly identify the signal as well as specific particles from the signal. Nevertheless, the noise
noise sources. If the biosensor system is designed to measwaused by these probabilistic yet unspecific particles still ex-
the analyte concentration in a reaction chamber and thists. If i background particles exist in the system, where
transduction process only observes captured particles, we caach can bind to the sensor surface with probabilitpgf,
define the signal to be the number of particles in stafEhe  the new SNR expression becomes
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o—1— Reaction Buffer
K&( Q/\ FIG. 6. An electronic DNA hybridization sensor where
- g | Target DNA the ISFET device detects the binding incidents. When
L (20 base-pair) charged DNA strands bind to their complementary
structures(i.e., binding sitep of the sensing area, the
el L Passivation charge profile in the channel is modified. Subsequently,

the induced change in channel transconductance is elec-
tronically quantified and associated with DNA binding.

— Metallization

(npch)2 (34) solution since externally induced drift processes reduce the
_ =~ _~ 21 specificity of the hybridization. The diffusion coefficient of
Noce(l ~pog) +Mpce(l —pog) + o7 the target moleculéanalytd, a single strand 20 base-pair

given that background particles can take part in transductioDNA in this example, defined bf; is estimated to be 1.5

process exactly the same way as the analyte particles. X 108 cn?/s, and[X], the nominal concentration of the
The SNR values i1132)—(34) are for single observations, DNA, is set to be 0.1 nM=~6x 10'° molecules/cr), a de-

but in some biosensor platforms multiple samples in time camectable concentration in fluorescence-based microarray plat-

be acquiredequivalent to low-pass filtering for continuous forms. The approximate binding kinetic rates as well as the

signalg. If these samples are independény., many 1f_355  simulation specifications are mentioned in Table 1. Note that

time samples apartthen fork samples SNR is increased by the time incrementAt=4.7 us) is set to its maximum allow-

a factor ofK. In Table I, we have summarized the closed-able value such tha&y=1/2.

form results derived in this section, which predicts the sto-  The first step in analyzing this biosensor is to create the

chastic behavior of one-dimensional affinity-based biosentransition matrix described bf19), assuming that =6 um

SNR =

Sors. (101 states in the Markov model including captured gtate
Equation(21) suggests that only 2.93% of the DNA mol-
IV. NUMERICAL EXAMPLE ecules in average will bind to the surface at equilibrium. The

settling time from(24) is always less than 0.2 s. In Fig. 7, we

As a practical example, we analyze the stochastic champjotted the result of a Monte Carlo random-walk simulation
acteristics of an ISFET device for electronic detection ofpf 1000 particles in the system for the duration of 0.6 s along
DNA hybridization* The structure of this specific biosensor with the predictions from21) and (24). The settiing time
consists of a planar field-effect sensing element at the bottorgpproximation calculated froni24) sets upper and lower
of the reaction chamber with depth bf (see Fig. 6. The  pounds for the quantity of captured analytes. One bound as-
detection occurs when the charged analy®BlA in this  sumes that all 1000 DNA molecules are captured initially,
case are captured by the probes which have complementary
sequences. Since the analyte is intrinsically a charged par-

. . . . . S Settling Ti
ticle, binding can create a surface potential change which Sensor fetting Zime

alters the double layer capacitance of the interface. Capaci ""'"---.-___
. . Ay
tance changes in the gate of the FET device change th ""----..._,_‘_
charge profile of the channel, modulating the drain-sourcey Bt TP
current, which results in detectable electronic output signals.g \
In this electronic biosensor platform, diffusion is basi- g 10} E
cally the only mass transport process of the analyte in the®
A Y- e

TABLE II. Specifications of ISFET biosensor for electronic detection of 2

.y . o
DNA hybridization. E 10t 2 0% captured 1

. . g —=— 100% captured
Parameter Simulation value 2 -©- 50% captured
e - 6 cP = Lower bound

DNA diffusion coefficient(D,) 1.5X10° cné/s == Upper bound
DNA concentration([X]) 0.1 nm A e Asymptotic value

P H \/ 11 10 1 1 L T 1
Forward binding raték,) 3x10 l\7/I1 S 0 o1 0.2 03 0.4 05 0.6
Reverse rateék_,l) _ 5s Time (second)
Probe saturation concentratidY,,,]) 1um
Transduction noise Powéu?) 1 moleculé FIG. 7. Transient simulation results of the DNA biosensor where analyte
Simulation lattice sizéAx) 60 nm number is 1000. A Monte Carlo random-walk simulation is carried out with
Simulation time incrementAt) 4.7 us three initial distributions. The lower and upper bounds are calculated using

(24), and the asymptotic value is derived frd2i).
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Noisc Power Spectral Density (PSD) using (33) versus the settling time approximation given in
' ~— Simulated Noise (a=1,000) (24), assuming that the system is isomorphically scaled
== Predicted Noise (n=1,000) down, i.e., the reaction chamber in all dimensions is scaled.
-&— Simulated Noise (n=10,000) : : i ;
10 Prm———— — Predicted Noise (a—10,000) The analyte concentration in this example is kept constant to

0.1 nM. This graph indicates that smaller sensors have faster
settling time and reach equilibrium more quickly. However,
the SNR of such systems decreases, which suggests a funda-
mental trade-off between SNR and speed of affinity-based
biosensors. This can in turn impose a basic limitation on the
size of the sensors for practical applications. Note that for
dimensions less than @m in this example, the SNR be-
comes extremely low, given that the number of analyte par-
ticles in the chamber turns out to be very small. This is, in
fact, known to be a limitation in many microfluidic analytical
systems?

Noise Amplitude

107

V. CONCLUSION

Frequency The signal observed in an affinity-based biosensors is a
FIG. 8. Simulated PSD of noise for=1000 andn=10 000, which demon- functlor_l_of Cz_iptured analyte partlcles by the correspon_@ng
strates the accuracy of the PSD approximation derive@in recognition sites and the selective probes. The probabilistic
motion and interaction of particles results in a random signal
o _fluctuation (biological noise¢, which is observed along with
whereas the other assumes that all reside in the bulk solutiop;nsducer noise. We have shown that the random component
with a ymform distribution. The responses Wlt.hln these ¢ signal has a Lorentzian power spectral density and its
boundaries correspond to Monte Carlo simulation resultgmpjitude is proportional to the concentration of captured
given different initial conditiong0%, 50%, and 100% cap- particles. The observed signal-to-noise raNR) of these
tured initially). The results show the applicability of closed- systems also decreases as the system is isomorphically scaled
form solutions, since the transient result all converge fastegown while the system’s speed increases. Additionally, we
than the settling time bounds toward an asymptotic valuepaye analytically calculated the general SNR of such sensors
which suggest 29.3 molecules are in average captured gfq derived the quantum-limited SNR, which denotes an un-
equilibrium. _ avoidable uncertainty for each measurement. The methods
Next we look at the fluctuation of the number of cap- yresented in this paper can be applied to the design of vari-
tured particles(biological nois¢ at equilibrium. From@31) o5 sensory systems, specifically low-noise biochemical de-
we predict a Lorentzian noise PSD with an amplitude proteciors with micro- and nanoscaled transducers. Based on
portional to the number of particles in the solution. In Fig. 8,ese models, one can also derive a variety of estimation
we have plotted the predicted PSD as well as the Sim“|atef<1echniques to better detect analytes in biosensors.
results forn=1000 andch=10 000. Again, the predicted PSD
clearly matches Monte Carlo simulations verifyi(®fl). ACKNOWLEDGMENTS
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