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Automatic Phase Alignment for a Fully Integrated
Cartesian Feedback Power Amplifier System

Joel L. Dawson and Thomas H. Lee, Member, IEEE

Abstract—A phase-alignment system is used in the first
reported IC to fully integrate a power amplifier, Cartesian feed-
back linearization circuitry, and a phase-alignment system. The
phase-alignment system consumes 8.8 mW from a 2.5-V supply
and employs a new technique for offset-free analog multiplication
that enables it to function without manual trimming. Phase
alignment of better than 9 is maintained for drifts as large as

90 . We demonstrate how the phase-alignment system improves
the stability margins of the fully integrated Cartesian feedback
system. The power amplifier itself, integrated on the same die,
operates at 2 GHz and delivers a maximum of 14.2 dBm of output
power into a 50-
 load. The IC was fabricated in a 0.25- m
CMOS process.

Index Terms—Analog multipliers, Cartesian feedback, chopper
stabilization, phase alignment, power amplifiers (PAs).

I. INTRODUCTION

DESIGNERS of RF power amplifiers (PAs) for modern
wireless systems are faced with a difficult tradeoff. On

one hand, the PA consumes the lion’s share of the power budget
in most transceivers. It follows that, in a cellular phone, for
example, battery lifetime is largely determined by the power
efficiency of the PA. On the other hand, it may be desirable to
have highspectralefficiency—the ability to transmit data at
the highest possible rate for a given channel bandwidth. The
design conflict is that, while spectral efficiency demands a
highly linear PA, power efficiency is maximized when a PA
is run as a constant-envelope, nonlinear element. The current
state of the art is to design a moderately linear PA and employ
some linearization technique. The amplifier operates as close
to saturation as possible, maximizing its power efficiency, and
the linearization system maximizes the spectral efficiency in
this near-saturated region.

There are many different linearization techniques. Among
these, Cartesian feedback is an attractive option for at least two
reasons: 1) because it employs analog feedback, the requirement
for a detailed nonlinear model of the PA is greatly relaxed and
2) it automatically and elegantly compensates for process vari-
ations, temperature fluctuations, and aging. Nevertheless, his-
torically the technique has suffered the practical shortcoming of
relying on synchronous downconversion, which has been dif-
ficult to realize without manual trimming. This problem, com-
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Fig. 1. Simple feedback system.

bined with the recent trend toward fully monolithic systems, has
caused Cartesian feedback to languish for years as little more
than an academic curiosity.

We have solved the synchronous downconversion problem
with a new, nonlinear, analog phase alignment regulator [5], [6].
What this enables, for the first time, is a fully integrated Carte-
sian feedback system that functions with an absolute minimum
of trimming. In this paper, we describe in detail the phase-align-
ment system of the prototype IC and present the results of its
testing. The complete linearization system will be described in
a separate article.

II. TERMINOLOGY CONVENTION

In this section, we identify the terminology conventions that
will be used in discussing feedback systems in this paper. Fig. 1
shows an example feedback system. The signalis the error
or difference between the command input and the feed-
back signal. The output of this system is related to the
command input through the well-known relation

The quantity will be referred to as the loop gain, or
loop transmission, of the system and will be given the symbol

.

III. CONSEQUENCES OFPHASE MISALIGNMENT IN CARTESIAN

FEEDBACK SYSTEMS

Fig. 2 shows a typical Cartesian feedback system [13]. The
system block represents the loop driver amplifiers, which
provide the loop gain as well as the dynamics introduced by
the compensation strategy. The loop drivers feed the baseband
inputs of the upconversion mixers, which in turn drive the PA.
Some means of coupling the output of the PA to the downcon-
version mixers is employed, and the output of these mixers is
used to close the feedback system.

0018-9200/03$17.00 © 2003 IEEE
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Fig. 2. Typical Cartesian feedback system.

Ideally, a Cartesian feedback system functions as two
identical, decoupled feedback loops: one for thecomponent
and one for the component. This corresponds to the case
of in Fig. 2. In practice, however, this state of affairs
must be actively enforced. Delay through the PA, phase shifts
of the RF carrier due to the reactive load of the antenna, and
mismatched interconnect lengths between the local oscillator
(LO) source and the two mixers all manifest as an effective
nonzero . Worse, the exact value ofvaries with temperature,
process variations, output power, and carrier frequency. A
Cartesian feedback system in whichis nonzero is said to have
phase misalignment. In this state, the two feedback loops are
coupled, and the stability of the system is compromised.

The impact of phase misalignment on system stability can be
seen mathematically. We start by observing that the demodu-
lated symbol is rotated relative to by an amount equal to
the phase misalignment. To see this, we write Cartesian com-
ponents of the demodulated symbol

where is the carrier frequency. Using trigonometric identities
and assuming frequency components atare filtered out, we
arrive at as

(1)

(2)

We see that, for , an excitation on the input of the
modulator results in a signal on the downconverter output
(and similarly for and ). By definition, the two loops are
coupled.1

1Technically,� = � is also an uncoupled case. However, there is now an
inversion in both loops, resulting in positive feedback instead of the desired
negative feedback.

One method of stability analysis is to consider the error sig-
nals and shown in Fig. 2. Recall that for the single
feedback loop of Fig. 1 the error signal is written

For frequencies of interest, the hope is that is very large.
In the present case, let the phase misalignment be. Further-
more, we set without loss of generality.2 The error
expressions, as a function of the single input , are written

where includes the dynamics of the loop compensation
scheme and the (linearized) dynamics introduced by the
modulator, PA, and demodulator. From here, it is straightfor-
ward to show that

This reduction of the system to a single-input problem now
yields considerable insight. We identify an effective loop trans-
mission as follows:

(3)

For perfect alignment, and is simply . The worst
alignment is , for which : the loop dy-
namics are a cascade of the dynamics in the uncoupled case. Un-
less designed with this possibility in mind, most choices of
yield unstable behavior in this second case. Equation (3) shows
that traditional measures of stability degrade continuously as
sweeps from 0 to , a fact demonstrated experimentally by
Briffa and Faulkner [4].

2We do not lose generality as long as we stay with linear analysis.
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Fig. 3. Rotation of the baseband symbol due to phase misalignment.

IV. A NALOG NONLINEAR REGULATOR CONCEPT

FOR MAINTAINING PHASE ALIGNMENT

Occasionally, true regulation of the phase alignment is not
needed, and it suffices to introduce a manually adjustable delay
between the LO source and, say, the demodulator [10]. This ap-
proach is only feasible, however, if the system is not subject to
variations in temperature, carrier frequency, process parameters,
or, in some cases, output power. For cases in which the align-
ment must be regulated, various methods have been proposed in
the literature [2], [3], [7], [12].

We present our control concept as a compact, truly continuous
solution to the problem of LO phase alignment. It is truly con-
tinuous because it does not, for example, rely on the appearance
of a specific symbol or pattern in the outgoing data stream. It is
compact because it is easily implemented without digital signal
processing, as presented here. This is a particularly compelling
advantage, as the signals in a Cartesian feedback system are nec-
essarily in analog form. Also, we emphasize that, because the
concept is based on the processing of baseband symbols, its re-
alization is independent of carrier frequency.

A. Nonlinear Dynamical System

Fig. 3 represents a baseband symbol at the inputs of the mod-
ulator and at the outputs of the demodulator of a Cartesian feed-
back system. Mathematically the vectors are described in both
Cartesian and polar coordinates, with primed coordinates de-
noting the demodulated PA output and unprimed coordinates
denoting the modulator input. In addition to undergoing a dis-
tortion in magnitude, the demodulated symbol is rotated by an
amount exactly equal to the phase misalignment [see (1) and
(2)].

A start to the design of a phase-alignment regulator is to ob-
serve that the signals, , , and , taken together, represent
enough information to determine the phase misalignment. Fur-
ther, they are easily accessible within the system. We seek to
combine these variables such that, over a suitable range, the de-
rived signal is monotonic in the phase misalignment.

One such combining of the variables is the sum of products
. Recognizing that and and

using trigonometric identities, we write the key relation

(4)

We see that, using two multipliers and a subtractor—operations
easily realizable in circuit form—one can derive a control signal
that is indeed monotonic in the phase misalignment over the
range .

Fig. 4 details a nonlinear dynamical controller built around
(4). Using the notation , an implementation can be
understood as mechanizing the equation

(5)

where is a constant of proportionality and gainis associated
with the integrator.

Equation (5) presupposes the ability to correct the phase shift
by changing . The original prototype described in [5] real-
izes the required rotation by directly phase shifting the modu-
lator LO. However, substantial power savings result from doing
symbol rotation at baseband, as shown in Fig. 4. Regardless, ro-
tation should be performed in the forward path of the Cartesian
feedback system, where the unavoidable artifacts of imperfect
rotation are suppressed.

B. Stability Concerns

Our control solution for the phase-alignment problem is the
simplest of nonlinear dynamical systems. It is seen from (5) to
have two equilibrium points: the first, for which the symbols are
aligned, isstable; the second, for which the symbols are mis-
aligned by radians, is unstable. For the ideal system repre-
sented by (5), this is the extent of a rigorous stability analysis.

The real-world situation can be complicated by dynamics as-
sociated with the phase shifter (and, possibly, the subtractor).
If we provisionally consider a modulation scheme in which the
magnitude of transmitted symbols is held constant,3 in (5)
loses its time dependence. Linearizing for small phase misalign-
ments, and including the dynamics of the phase shifter as,
we can represent the system as shown in Fig. 5. Drawing the
system this way requires some manipulation. The output of the
phase shifter is not really, but rather an additivepart of that
gets combined with the polar angle of the symbol being trans-
mitted. However, in the absence of phase distortion and drift,
the symbol-by-symbol changes of the polar angleare tracked
by identical changes in . These symbol-rate changes are thus
invisible to an alignment system, and it is appropriate to label
the output of as . We can then include the effects of phase
distortion and phase alignment drift as the additive disturbances
of Fig. 5.

One can ensure stability by choosingsuch that, for the
largest symbol magnitude, loop crossover occurs before non-
dominant poles become an issue. Fortunately, the drift distur-
bance will normally occur on time scales associated with tem-

3Unlikely when using Cartesian feedback, of course. Temporarily making this
assumption, however, yields insight that is broadly relevant to the stability anal-
ysis.



2272 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 12, DECEMBER 2003

Fig. 4. Phase-alignment concept.

Fig. 5. Linearized phase regulation system.M is the desired misalignment, which is nominally zero.

perature drift and aging [13]. Suppression of the phase distortion
is the domain of the Cartesian feedback itself. It follows that for
many systems, little of the design effort need be focused on fast
phase alignment.

C. Quadrature Error in the Mixers

The analysis of the phase-alignment control problem be-
comes complicated when one considers quadrature error in
the mixers. It can be shown that, with this nonideality, no
single setting of the phase shifter perfectly decouples the

and loops. This analytical result is independent of the
phase-alignment method used. Fortunately, mixers with small
quadrature errors (5 ) are easily realized. Such mixers cause
no serious problems in our experiments.

V. NEW TECHNIQUE FOR OFFSET-FREE

ANALOG MULTIPLICATION

The achieved accuracy of phase alignment is limited by errors
in computing the sum of products [5]. A major source
of these errors is offsets in the analog multipliers. Our basic mul-
tiplier cell is shown in Fig. 6 [8]. A mathematically complete de-
scription of a multiplier’s offset behavior requires at least three
quantities: and , the offsets attributable to the inputs, and

, the offset introduced in the current-to-voltage conversion
performed at the output of the multiplier. Minimizing these off-
sets is difficult: one might imagine, for example, some com-
bination of careful, symmetrical layout and a calibration step.

We introduce instead the technique shown in Fig. 6. The under-
lying idea is to employ chopper stabilization to eliminate (or at
least greatly suppress) these multiplier offsets which produce
the dominant phase alignment errors in conventional realiza-
tions. Long successfully used in precision dc amplifiers [1], [9],
[14], two critical modifications are required to apply chopper
stabilization to analog multiplication. The first modification is
to chop the two inputs in quadrature. The second is to chop down
at twice the original chopping frequency. To the extent that this
chopping strategy is perfectly implemented, offsets, , and

are completely circumvented.
The chopping operation is equivalent to mixing a signal with

a square wave of unit amplitude.4 In the following treatment,
one chopping waveform will be denoted , and the other
quadrature waveform will be denoted . We write these two
waveforms as their Fourier series decompositions

where is the angular chopping frequency .

4That is to say, a square wave that alternates between+1 and�1. We clarify
because sometimes, particularly in single-ended systems, it is convenient to
chop with a square wave that alternates between+1 and 0. This latter case re-
quires a mathematical treatment that differs slightly from what we present here.
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Fig. 6. New technique for offset-free analog multiplication.

Fig. 6 shows the signals applied to the inputs of the analog
multiplier as

and

Assuming linear multiplication, the output of the multiplier (be-
fore the down chopping operation) is written as

(6)

The second and third terms of this expression can only have
spectral content centered at and/or its odd harmonics, while
the fourth and fifth terms are centered at dc. The key, then, is
to demonstrate that the product has spectral con-
tent only at even harmonics of the fundamental. A graphical
analysis, as shown in Fig. 7, is by far the easiest way to accom-
plish this. The product is seen to be

which has spectral components only at even harmonics:
. Equation (6) now becomes

(7)

Fig. 7. Graphically computingc (t)c (t).

and we have achieved the goal of separating, in the frequency
domain, the desired product from the artifacts of dc offsets.

The last steps are to do a down-chopping operation and then
to filter. For the down-chopping waveform, is the proper
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Fig. 8. Overview diagram of the phase-alignment system.

Fig. 9. Phase error computation and offset-cancelling switched-capacitor integrator.

choice. To analyze the effect of multiplying (7) by , it is
helpful to make use of the equalities

which are readily verifiable by the kind of graphical analysis
depicted in Fig. 7. Multiplying (7) by , we obtain

(8)

Passing through a low-pass filter at last yields the desired
product .

VI. FULLY INTEGRATED PROTOTYPE

To test the phase-alignment and chopper stabilization
concepts, a prototype was implemented in National Semicon-

ductor’s 0.25- m CMOS process. A system overview is given
in Fig. 8.

A. Computing the Phase Error and Integrating

In Fig. 9, we show how the phase error calculation and inte-
gration are carried out on the fabricated IC. The chopping fre-
quency is 2.5 MHz, down-chopping occurs at 5 MHz, and all
clocks are derived from a 20-MHz off-chip crystal oscillator. As
can be seen in the diagram, a switched-capacitor integrator pro-
vides the integration, and two factors motivate this choice over
continuous-time methods. The first factor is that the offset re-
moval of Fig. 6 is wasted if the integrator that follows has a large
input-referred offset. Accordingly, an autozeroing switched-ca-
pacitor (SC) integrator [11] is used.5 The second factor is that
high speed in the phase-alignment system is unnecessary, as the
proper phase setting typically evolves on time scales no shorter
than those of temperature change, aging, and process variation.

5The offset of the SC integrator is further mitigated by the two preceding gain
stages shown in Fig. 9.
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Fig. 10. Analog rotation using the 1-norm. The symbol is rotated along the contour of a square instead of a circle.

Fig. 11. Implementation of symbol rotation. Four analog multiply cells form the core of the matrix rotation block.

A slow integrator is thus appropriate and easily realized with a
slowly clocked SC integrator. Its fully differential op-amp draws
524 A and has a simulated dc gain of 115 dB. The unwanted
chopping artifacts centered at 2.5 and 5 MHz are not filtered
out. Instead, the integrator is clocked at 39.2 kHz, which has
the property of aliasing tones at 2.5 and 5 MHz to and ,
respectively, in the domain.6 As a result, aliasing of these ar-
tifacts does not result in dc errors. Chopping clocks transition
on the rising edge of the 20-MHz source, while the integrator
clock transitions on the falling edge. This ensures that edges of
the chopping clocks do not occur at a sampling instant.

In order to test the system, it is convenient to implement the
SC integrator with two modes of operation. The first mode is
simply normal integration. For the second mode, the inverted
output of the integrator is connected to the input, with the result
that the output is driven to zero. Use of this reset mode enabled
numerous experiments during the testing of the IC.

6Any frequency determined by4f =n, wheren is an odd integer, will have
this property. For this chip,n is 255.

B. Analog Symbol Rotation

For testing purposes, it is necessary to allow some way of
intentionally introducing phase misalignment. Fig. 8 shows
that the output of the phase-alignment system, the signal
pair is fed to the “Rotation angle” block,
which also takes as inputs the manually generated signal pair

. The output of the “Rotation angle” block
is the composite signal pair ,
which is computed using four analog multipliers. This output
is then used to rotate the baseband symbol (again using analog
multipliers to realize the matrix rotation) before upconversion.
We are thus able to manually introduce misalignments over a
180 range and thereby confirm the regulatory behavior of the
phase alignment system.

The chosen means of realizing the pairs is
depicted in Fig. 10. The input to the rotator block is taken
directly from the integrator, while the input is computed
by an analog feedback loop. This loop acts to preserve the
1-norm of the pair: , where

is a reference voltage. The result is that the symbol is
rotated along the contour of a square, as shown in Fig. 10,
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Fig. 12. Frequency-domain example of linearization behavior.

Fig. 13. Phase-alignment performance.

instead of a circle. This is a departure from [5], where in
order to achieve pure rotation without affecting the magnitude
the 2-norm was used. Use of the
1-norm is a purely simplifying decision which removes analog
squarers from the system. Fortunately, the resultant warping
of the symbol magnitude is rejected by the Cartesian feedback
loop. For , the control loop of Fig. 10 enables
rotations over a range of 90 .

Fig. 14. Effective output offset� of the chopper-stabilized multipliers of
Fig. 9.

The circuit implementation of Fig. 10 is shown in Fig. 11. The
resistive voltage divider provides the voltage reference. The
capacitors serve a dual purpose. For differential signals, they set
the value of the low-frequency pole to approximate the integrator
of Fig. 10. For common-mode signals, they serve as the Miller
compensation capacitor for the common-mode feedback loop
(not shown). This circuit accounts for 3.1 mW of the overall
power dissipation.
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Fig. 15. Trace capture of a phase-alignment experiment. The Cartesian feedback loop is open.

VII. PROTOTYPERESULTS

In Fig. 12, we show a comparison of the open- and
closed-loop spectra of the complete Cartesian feedback system.
The top spectrum is the result of opening the CFB loop and
driving a 1-kHz sine wave directly into the channel of the
upconversion mixer. The bottom spectrum shows the RF output
during closed-loop operation with the phase-alignment system
active. These spectra show that the Cartesian feedback system,
aided by the alignment circuitry, effects a third-order harmonic
reduction of 6 dB.

The reader will note that the noise floor in the closed-loop
system is raised by approximately 20 dB in relation to that of
the open-loop system. Furthermore, there is a peak centered at
the carrier and a second harmonic centered 2 kHz away from
the carrier. These are artifacts of a deficiency in the downcon-
version mixers, and will be discussed with the details of the full
linearization system in a separate article.

Fig. 13 summarizes the phase regulation of the prototype IC.
The test signal is a 500-mV-amplitude 10-kHz square wave on
, and is grounded. It is seen that the phase error never ex-

ceeds 9 over the full range of disturbances, which is more than
adequate to keep the Cartesian feedback loop stable. Fig. 14
shows the offset of the phase-error computation circuit in Fig. 9
referred to the input of the the first gain stage. This offset for a
chopping frequency of 2.5 MHz is 459V, and here the effec-
tiveness of the chopping strategy is evident: the differential pair
of the first gain stage alone has a mismatch of 7.8 mV.
By way of comparison, complete failure of the phase-alignment
system corresponds to an offset of 4.4 mV.

Fig. 15 is a trace capture of the type of experiment that yielded
the data of Figs. 13 and 14. The Cartesian feedback loop is open,

a 500-mV-amplitude 10-kHz square wave drives thechannel,
and the channel is grounded.7 The top two traces show that,
initially, the misalignment has been manually set to 45. The
bottom two traces show the result of turning on the phase-align-
ment system (releasing it from the reset mode described in Sec-
tion VI-A). Confirming its operation, we see a square wave on
the channel only, while the channel rests close to ground.8

Fig. 16 serves to illustrate the impact of phase misalignment
on the stability margins of the closed-loop CFB system. Dom-
inant pole compensation is used in the CFB loop, and for the
upper two traces the misalignment is manually set to 74. Over-
shoot and ringing is evident on these waveforms, and further
misalignment causes outright oscillation. For the bottom two
traces, the phase-alignment system is turned on, and one sees the
classic first-order step responses that are expected when using
dominant-pole compensation.

A die photo of the prototype chip is shown in Fig. 17, which
was fabricated in National Semiconductor’s 0.25-m CMOS
process. The maximum output power of the PA is 14.2 dBm
at 2 GHz, and the complete Cartesian feedback linearization
system draws 7.5 mA from a 2.5-V supply. Of that 7.5 mA,
3.5 mA is consumed by the phase-alignment regulator. All
signal paths are fully differential.

7The voltage droop on what is normally the flat part of the square waves
is due to the fact that, at the board-level, the modulator inputs have been ac
coupled. There are no such ac-coupling capacitors between the loop drivers and
the modulators.

8The dc offsets observable onI andQ are due in part to the board-level dif-
ferential-to-single-ended converters, which are necessary in order to display the
differential signals of the IC on an oscilloscope. We employ an active solution,
as opposed to a balun, in order to permit testing of the system using low-fre-
quency signals.
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Fig. 16. Illustration of phase-alignment stabilizing the closed-loop CFB system.

Fig. 17. Die photo.

VIII. C ONCLUSION

This paper represents the first integrated realization of the
control concept described in [5]. It was made possible in part
by a new technique for analog multiplication, by which this
phase-alignment system functioned without manual trimming.
As a direct result of the compactness of this phase-alignment
solution, we succeeded in designing, fabricating, and testing the
first reported IC to have a PA, Cartesian feedback circuitry, and
phase-alignment system integrated on a single die.
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