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Superharmonic Injection-Locked Frequency Dividers
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Abstract—Injection-locked oscillators (ILO’s) are investigated
in a new theoretical approach. A first-order differential equation
is derived for the noise dynamics of ILO’s. A single-ended
injection-locked frequency divider (SILFD) is designed in a 0.5-
���m CMOS technology operating at 1.8 GHz with more than 190
MHz locking range while consuming 3 mW of power. A differ-
ential injection-locked frequency divider (DILFD) is designed in
a 0.5-���m CMOS technology operating at 3 GHz and consuming
0.45 mW, with a 190 MHz locking range. A locking range of 370
MHz is achieved for the DILFD when the power consumption is
increased to 1.2 mW.

Index Terms—Analog and digital frequency dividers, injection-
locked oscillators, radio-frequency integrated circuits.

I. INTRODUCTION

CONVENTIONAL phase-locked loops (PLL’s) use fre-
quency dividers in their feedback path to achieve fre-

quency multiplication. Most PLL’s designed for wireless sys-
tems use flip-flop-based digital frequency dividers. These
dividers are wide band and their power consumption increases
with the frequency of operation. In frequency synthesizers used
in modern wireless systems, frequency dividers consume a
large percentage of the total power [2], [8]. Most often, off-
chip frequency dividers are used as the first stage in a stack
of dividers in high-frequency PLL’s [8]. The limitation on
power and maximum frequency of operation of conventional
digital frequency dividers is associated with the wide-band
nature of these dividers. However, since most wireless systems
are themselves narrow band, narrow-band analog frequency
dividers may be used to reduce power and increase the
maximum frequency of operation.

Regenerative frequency dividers [Fig. 1(a)] are the most
widely used analog frequency dividers [5]–[7]. Frequency
division in such a divider results from combining frequency
multiplication in the feedback path with mixing at the input.
Regenerative dividers can operate at frequencies higher than
flip-flop-based dividers [13]. However, they require many
functional blocks to guarantee frequency division [7]. As a
result, regenerative frequency dividers are not the best solution
for low-power systems.

Parametric frequency dividers [Fig. 1(b)] are another group
of analog frequency dividers used in microwave systems [3],
[5], [15]. The frequency division principle of a parametric
frequency divider relies on exciting a varactor at frequency
and realizing a negative resistance that sustains a loop gain
of unity at . High varactors and inductors are key
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Fig. 1. Analog frequency dividers: (a) regenerative frequency divider and
(b) parametric frequency divider.

elements in parametric frequency dividers [15]. Since high
passive elements cannot be implemented in contemporary

silicon technologies, parametric dividers are not amenable to
integration.

The third group, injection-locked frequency dividers
(ILFD’s), work by synchronizing an oscillator with an incident
signal. Depending upon the ratio of the incident frequency
to the oscillation frequency, three classes of injection-
locked oscillators (ILO’s) may be defined: first-harmonic,
subharmonic, and superharmonic ILO’s. In a first-harmonic
ILO, the oscillation frequency is the same as the fundamental
frequency of the incident signal [1], while in a subharmonic
ILO, the incident frequency is a subharmonic of the oscillation
frequency [4], [9], [14], [20]. Likewise, in a superharmonic
ILO, the incident frequency is a harmonic of the oscillation
frequency. Uzunogluet al. [16], [17] used synchronous
oscillators (SO’s) as frequency dividers, without providing
a physical model for the frequency division functionality of
SO’s. The SO proposed in [17] is a nonlinear oscillator with
a very large internal gain and a saturated output amplitude
(voltage limited). High bias currents are required to provide the
large gain and to operate SO’s in a voltage-limited amplitude
regime. Therefore, SO’s are not appropriate for low-power
systems. Unlike SO’s, superharmonic ILO’s can be designed
as very low-power frequency dividers [10].

In this paper, we present a new method to calculate the
locking range of ILO’s. We also introduce two different
mechanisms for failure of injection locking. A differential
equation is derived that models the noise dynamics of ILO’s.
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Fig. 2. Model for a free-runningLC oscillator.

Fig. 3. Model for an injection-locked oscillator.

Measurements on a single-ended ILFD (SILFD) are compared
with simulations. The simulation results of a differential ILFD
(DILFD) are reported as well.

II. M ODEL FOR INJECTION-LOCKED OSCILLATORS

An LC oscillator can be modeled as a nonlinear block
, followed by a frequency selective block (e.g., anRLC

tank) , in a positive feedback loop as shown in Fig. 2.
The nonlinear block models all the nonlinearities in the
oscillator, including any amplitude-limiting mechanism. To
have a steady-state oscillation, a loop gain of unity should be
maintained. We would like to express the oscillation condition
in terms of gain and phase criteria for reasons that will be clear
later. The gain condition is satisfied if the output amplitude

is the same as the amplitude of in an open-loop
excitation of the system at the oscillation frequency. The
phase condition requires that the excess phase introduced in
the loop at be zero.

With an additional external signal (i.e., the incident sig-
nal), this same model can be used to model an ILO. This
model is shown in Fig. 3. To investigate the injection-locking
phenomenon in an ILO, we define

(1)

(2)

(3)

(4)

where is the incident signal, is the output signal,
is the phase difference between those two signals, andand

are the resonant frequency and quality factor of theRLC
tank, respectively. The output of the nonlinear block may
contain various harmonic and intermodulation terms of
and . As shown in Appendix A, we can write as

(5)

where each is an intermodulation coefficient of
.

We assume that all frequency components of far
from the resonant frequency of the tank are filtered out,
so the frequency of the output signal can be written as

. Thus, we need only consider intermodulation
terms with frequency , that is, . For
an th-order superharmonic ILO (i.e., ), the
intermodulation terms with possess a frequency
equal to of the incident frequency. The signal ,
which is the component of with frequency , can be
written as

(6)

Using a complex exponential to replace sines and cosines,
and applying the oscillation condition, the output signal can
be written as

(7)

or

(8)

The real and imaginary parts of (8) can be separated as

(9)

(10)

Equations (9) and (10) are the fundamental equations for
a superharmonic injection-locked oscillator. The simultaneous
solution of these two equations specifies and for any
incident amplitude and any incident frequency or,
equivalently, for any offset frequency .
Equation (10) can be rearranged as

(11)

where is Adler’s locking range
figure of merit [1]. The fundamental equations, (9) and (10),
are very general but provide limited intuition. However, as
shown in the next section, for the special case of

(i.e., divide-by-two) and a third-order nonlinearity (i.e.,
), (9) and (10) can be solved

analytically, which allows the development of design insight.

A. Special Case ( and Is a
Third-Order Nonlinear Function)

For the special case of and
, the only unknown in (10) is the input–output
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phase difference , which means the phase condition can be
satisfied independently of the gain condition

(12)

On the other hand, satisfying the gain condition and solving
(9) results in an expression for the oscillation amplitude

(13)

As (12) suggests, the locking range can be increased by in-
creasing either or the incident amplitude . Increasing

in an LC oscillator is equivalent to using an inductor
with a larger value ( ). The self-resonant frequency
of the inductor puts a limit on the maximum inductor size and
effectively limits the locking range by failing to satisfy the
phase condition. The increase of the locking range with the
incident amplitude is also limited. When the term under the
square root in (13) becomes negative, the gain condition fails
and limits the locking range. As a result, injection locking
fails and the locking range is limited by failure of either
the phase condition (phase limited) or the gain condition
(gain limited). The effect of each limiting mechanism on the
noise performance of an ILO is discussed in more detail in
Section V-A.

As mentioned before, the locking range in an ILO is a
function of the incident amplitude. So, by injecting the incident
signal into a high-impedance node, the required incident power
can be reduced significantly. Due to the high impedance of the
gate of MOS transistors, MOS transistors are a good candidate
for injection-locked oscillators.

The underlying assumption in the derivation of (9) and
(10) is that the resonant frequency of theLC tank does not
change as the incident frequency changes. However, to achieve
a larger tuning range, the free-running oscillation frequency
of the ILO can be modified such that it tracks the incident
frequency [11], [12].

III. N OISE IN ILO’s

To investigate the phase noise performance of an ILO,
we first consider the response of a first-harmonic ILO to a
deterministic sinusoidal noise. For convenience, the model
for an ILO is repeated in Fig. 4 with the noise added
to the summing junction. The noise can be either from the
incident signal or from the ILO itself. The incident signal,
output signal, and sinusoidal noise are represented by their
equivalent phasors in Fig. 5 and mathematically defined as

(14)

(15)

(16)

When the output signal is injection locked to the incident
signal in the absence of noise, the input–output phase differ-
ence is constant . However, when sinusoidal noise

Fig. 4. ILO model used for noise analysis.

Fig. 5. Phasor representation of signals in Fig. 4.

with an offset frequency is added to the system, is no
longer constant and the instantaneous output frequencyis
defined as

(17)

It is the variation of that generates phase noise in
the output signal. As shown in Appendix B, can be
approximated as

(18)

where is the difference between the incident frequency
and the free-running frequency, , and

The input–output phase difference can be written as

(19)

where is the input–output phase difference in the absence
of noise and is a constant [ from
(45)] and is the time-variant portion of . because

. Hence (18) can be simplified to

(20)

where

(21)

If , meaning that the incident frequency
is not at the edge of a phase-limited locking range,can be
approximated as

(22)
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Fig. 6. Noise transfer function of an ILO.

which allows simplification of (20) to a first-order differential
equation

(23)

The noise transfer function from to the output phase (23)
is shown in Fig. 6. From (23) and Fig. 6, it is clear that an
ILO has the same noise transfer function as a first-order PLL.
The noise from the incident signal is shaped by the low-pass
characteristic of the noise transfer function, and the output
signal tracks the phase variations of the incident signal within
the loop bandwidth . However, unlike a
first-order PLL, the loop bandwidth of an ILO is a function
of the incident amplitude and is larger for a larger incident
amplitude.

The interpretation of the noise transfer function is a little
different if the noise comes from the ILO itself. Within the
loop bandwidth, the noise from the ILO is suppressed by the
ratio of the noise power to the incident power. Outside the
loop bandwidth, the noise suppression increases by 20 dB per
decade of offset frequency, and a 1 phase noise region is
observed.

The noise dynamics in a superharmonic ILO are the same
as those of a first-harmonic ILO, except is
of that in a first-harmonic ILO due to the frequency division
operation. So (23) for an th-order ILFD can be modified as

(24)

where is no longer a simple function of but is
determined by solving the superharmonic ILO’s fundamental
equations, (9) and (10). As the division ratio increases, the
noise rejection increases proportionally. So in a divide-by-two
ILFD, the output close-in phase noise is dB
lower than that of the incident signal.

IV. CIRCUIT IMPLEMENTATION

In this paper, we propose two different architectures for
ILFD’s. Fig. 7 shows the schematic of an SILFD. For simplic-

Fig. 7. Schematic of the single-ended injection-locked frequency divider.

Fig. 8. Schematic of the differential injection-locked frequency divider.

ity, the biasing circuitry is not shown in this figure. A Colpitts
oscillator forms the core of the SILFD. The incident signal is
injected into the gate of M1. Transistors M1 and M2 are used
in cascode, mainly to provide more isolation between the input
and output. Transistor M2 is sized to be smaller than M1 by
almost a factor of three to reduce the parasitic capacitance
at the output node (drain of M2). As a result, a larger
inductor can be used to resonate this reduced capacitance. As
discussed in Section II-A, using a larger inductor increases the
locking range. The power consumption is also reduced due
to the increased effective parallel impedance of theLC tank,
assuming that tank losses are mainly from the inductor. Last,
Li and Ci in the gate of M1 are used to model theLC tank of
the precedingLC oscillator. The analogy of this circuit with
the model in Fig. 3 can be realized by observing that transistor
M1 functions as the summing element for the incident and
output signals.

The schematic of a DILFD is shown in Fig. 8. The incident
signal is injected into the gate of M3, which delivers the
incident signal to the common source connection of M1 and
M2. The output signal is fed back to the gates of M1 and
M2. The output and incident signals are thus summed across
the gates and sources of M1 and M2. The common source
connection of M1 and M2, even in the absence of the incident
signal, oscillates at twice the frequency of the output signal,
which makes this node an appropriate injection node for a
divide-by-two operation.
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Fig. 9. Die micrograph of the SILFD (0.7� 1 mm2).

V. SIMULATION AND MEASUREMENT RESULTS

A. Single-Ended ILFD

The SILFD shown in Fig. 7 is designed in a 0.5-m CMOS
technology and operates on 2.5 V and a bias current of 1.2 mA.
The free-running frequency of oscillation is 920 MHz, and the
incident frequency is around 1840 MHz. Both inductors are
on-chip spiral inductors with patterned ground shields [18],
[19]. The die micrograph of the SILFD is shown in Fig. 9.
The total area of the die is 0.7 mm(0.7 1 mm ).

The oscillation amplitude of the SILFD is plotted in Fig. 10
as a function of the incident frequency for different incident
amplitudes. The locking range is determined by the frequency
difference between the two ends of each curve. At small
incident amplitudes, the locking range is phase limited, as
explained in Section II-A, and increases with the incident
amplitude. However, for incident amplitudes beyond 300 mV,
the locking range is gain limited and shrinks as the incident
amplitude increases. Simulated and measured locking range
as a function of incident amplitude are shown in Fig. 11.
A locking range of more than 190 MHz (11% of the center
frequency) is achieved when consuming 3 mW of power. The
maximum locking range as a function of bias current is shown
in Fig. 12. A locking range of more than 135 MHz is achieved
with a bias current as low as 600A.

Phase noise measurement results are shown in Fig. 13. The
thin solid line in this figure shows the phase noise of the free-
running SILFD. The thick solid line is the phase noise of the
HP8664A signal generator used as the incident signal. The
nonsolid lines are the phase noise measurement of the SILFD
when locked to three different incident frequencies, referred to
as middle-frequency, phase-limited, and gain-limited curves.

Fig. 10. Oscillation amplitude in the SILFD.

The middle-frequency curve is the output phase noise mea-
sured at an incident frequency in the middle of the locking
range. The phase- and gain-limited curves are measured when
the incident frequency is at the edge of a phase- and gain-
limited locking range, respectively.

At low offset frequencies, the divider output phase noise
is almost 6 dB lower than the incident phase noise, as is
expected from the divide-by-two operation and predicted by
(24). However, at higher offset frequencies, the excess noise
from the divider increases the output phase noise. The far-
out phase noise at the edge of a gain-limited locking range is
even worse than the phase noise of the free-running oscillator.
The small oscillation amplitude at the edge of a gain-limited
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Fig. 11. Locking range for the SILFD.

Fig. 12. Locking range as a function of the bias current in the SILFD.

locking range explains this higher phase noise of the ILFD at
large offset frequencies.

Despite the large close-in phase noise of the free-running
ILFD, the divider phase noise tracks the phase noise of the
incident signal for offset frequencies up to 100 kHz. As a
result, the ILFD can be designed for very low-power operation
without sacrificing the noise performance of the system. Also,
very low on-chip spiral inductors, with small physical
dimensions, can be used in ILFD’s.

B. Differential ILFD

A DILFD (Fig. 8) is designed in a 0.5-m CMOS tech-
nology. The supply voltage is 1.5 V and the tail current is
nominally 300 A. The DILFD oscillates at 1.6 GHz in free-
running operation, and the incident frequency is in the vicinity
of 3.2 GHz. On-chip spiral inductors with a of 5.8 are used
in this design.

The oscillation amplitude as a function of incident fre-
quency is shown in Fig. 14. Comparing this with Fig. 10,
two differences are observed. In Fig. 14, the curves are flatter
and the locking range increases monotonically with incident
amplitude. These suggest that the locking range in the DILFD
is phase limited, unlike the gain-limited locking range in the

Fig. 13. Phase noise measurement in the SILFD.

SILFD at large incident amplitudes. This can partially be due
to the subunity voltage gain of M3 in Fig. 8. As a result,
the amplitude of the injected signal at the summing node (the
common source connection of M1 and M2) of the DILFD is
less than that of the SILFD. Also, the increased tail current
in the presence of a large incident signal changes, which
can effectively change the phase-limited region of the locking
range in DILFD’s.

More than 190 MHz of locking range is achieved with only
0.45 mW of power (Fig. 14). By increasing the power to 1.2
mW, the locking range increases to 370 MHz (12% of the
center frequency). The DILFD is expected to have a better
phase noise than the SILFD over the entire locking range, due
to its phase-limited locking range.

The performance of the SILFD and DILFD is summarized
in Table I. For comparison purposes, the performance of a
conventional frequency divider made out of two back-to-back
connected source-coupled-logic (SCL) latches designed in the
same technology is also tabulated. The SCL divider operates
at about half the frequency of the DILFD and consumes more
than four times the power. The SCL divider also fails to
operate above 3 GHz. The last column in Table I shows the
simulated acquisition time in ILFD’s. The acquisition time,
which measures how fast an ILFD locks to an incident signal,
is inversely proportional to the locking range. Therefore, as
long as the locking range is phase limited, increasing the
incident amplitude reduces the acquisition time.

C. Noise Transfer Function

To verify the noise dynamics derived in Section III, the
SILFD is injection locked to an incident frequency while
a second signal is injected at different offset frequencies
from the incident frequency. As demonstrated in Fig. 15,
two sidebands are generated in the output signal spectrum.
The power below carrier of the sidebands is measured at
different offset frequencies and is shown in Figs. 16 and 17.
In Fig. 16, the incident power is constant and the noise
transfer function is measured for three noise power levels.
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Fig. 14. Oscillation amplitude in the DILFD.

TABLE I
FREQUENCY DIVIDER PERFORMANCE

Fig. 15. Sideband generation due to noise injection at a frequency offset
from the incident frequency.

As predicted by (24), reducing the noise power by 3 dB shifts
the noise transfer function curve down by the same amount.

The same measurement is repeated for different incident
powers while keeping the noise power constant. The results
are shown in Fig. 17. When the incident power increases by 3
dB, both the loop bandwidth and the close-in noise rejection
increase by 3 dB, while the far-out noise does not change. The

Fig. 16. Noise transfer function in the SILFD (Pi = �40 dBm).

noise transfer function measurement results of Figs. 16 and 17
are in very good agreement with (24).

VI. CONCLUSION

A new method is reported for calculating the locking range
of injection-locked oscillators. Two different mechanisms for
the failure of injection locking are introduced. It is shown
mathematically that the noise transfer function of an ILO is the
same as that of a first-order PLL. Two novel circuits for single-
ended and differential ILFD’s are proposed. The measurement
results of the SILFD verify the theory of injection locking and
the model for the noise dynamics of ILO’s. It is shown that
ILFD’s can operate at frequencies where conventional digital
frequency dividers fail and still consume less power than digi-
tal frequency dividers operating at lower frequencies (Table I).
Unlike digital frequency dividers, the power consumption in
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Fig. 17. Noise transfer function in the SILFD (Pn = �70 dBm).

an ILFD does not increase linearly with the frequency of
operation. Therefore, injection-locked frequency dividers are
attractive for digital CMOS frequency dividers, especially for
low-power and high-frequency wireless systems.

APPENDIX A

To simplify the proof of (5), we redefine , , and as

(25)

(26)

(27)

where and . Function is periodic
with respect to both and . For every , we can define a
periodic function as

(28)

Since and can be
represented by its Fourier series as

(29)

where each is a Fourier series coefficient of and
is calculated as

(30)

(31)

Since each is even and periodic with period , it can
be represented in terms of its Fourier series as

(32)

where

(33)

(34)

Now to complete the proof, insert (32) into (29) and replace
by

(35)

APPENDIX B

To derive (23), we start by evaluating the excess phase
introduced in the loop, excluding the phase added by the
frequency selective block in a first-harmonic ILO.

The phasor representation of , (Figs. 4 and 5), is
calculated as the vector sum of , , and . As
experiences the nonlinearities of , new harmonics are
generated, but , the component of with the same
instantaneous frequency as , stays in phase with . So

, the phasor representation of , and have the same
direction, as shown in Fig. 5. The phase difference introduced
between and is equal to

(36)

where is the phase difference between and (vector
sum of and ) and is the phase difference between
and (Fig. 5). Since , we can approximate

and as

(37)

(38)

(39)

where

(40)

To satisfy the phase condition,should be canceled out by
the phase introduced by theRLC tank . Thus

(41)

where

(42)

and

(43)

where is replaced by its equivalent from (17). To calculate
, we insert (43) and (36) into (41) and rearrange the

terms

(44)

Equation (44) can be further expanded by replacingand
from (37) and (39)

(45)
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Now if we replace by from (40) and expand
, (45) can be written as

(46)

Since , we can approximate as

(47)

which ends our derivation.
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