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• Motivation

• Introduction to Specifications Design

• Signal Path Design and Experimental Verification

• Synthesizer Design and Experimental Verification

• Final Receiver Design and Measurements

Outline
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 GRAPHIC TO COME

Eliminate wires everywhere !

Motivation
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• Data rate: 1 Mb/s.

• ISM band operation.

• A few channels  (>5) for diversity/ multiple access.

• Robust modulation scheme.

• Range ~ 10 m.

• Implementable with very low-cost, low-power devices.

Basic System Requirements
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• State-of-the-art CMOS Bluetooth Radio  (Ericsson, ISSCC 2002)

Can we make some tradeoffs at the system level to lower

costs?

DIGITAL

RADIO

BASEBAND

Data Rate: 1 Mb/s

Active Receiver Current = 30 mA

Active Transmit Current = 35.5 mA

Technology: 0.18 µm CMOS

Supply Voltage ~ 2.5 - 3 V

Active Radio Area =  4.0 mm2

Offchip: Loop filter, SAW filter

One Solution: Bluetooth
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•  A new approach - concurrent design of circuits and system

specifications.

Bluetooth Zigbee Zero-G

Data Rate 1 Mb/s 250 kb/s 1 Mb/s

Spreading FHSS, 79 Chan. DSSS, 32-chip
PN code

DSSS, 10-chip
offset code

Modulation BFSK O-QPSK DBPSK

Crystal Offset Tol. 20 ppm 80 ppm 200 ppm

Pulse Shaping Gaussian Half sine Gaussian

Sensitivity -70 dBm -85 dBm -75 dBm

Build a Simple System (I)
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• Choose direct-sequence

spreading (DSSS): Frequency

Hopping (FHSS) places strict

requirements on PLL settling

time.

• Differential phase-shift key-

ing (DPSK) : robust to crystal

frequency offset.

frequencyt = 0 t = 1t = 2

Q

I

∆ωo*T

Build a Simple System (II)
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• Choose channels: 2400 + 12n MHz, n = 1..6 .

•  Relax oscillator phase noise requirement by using large inter-

channel spacing and guard bands.

BW=10 MHz

2412 2424 2436 2448 2460 2472
f(MHz)

2483.52400

ISM Band

LGB = 7 MHz UGB = 6.5 MHz

Build a Simple System (III)
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• Choose direct conversion : low-power, area-efficient radio

architecture.

• DC offset problem at output of mixer. Simple solution: Use large

DC-blocking capacitor.

Problem : large capacitor for low cutoff frequency, low noise .

LNA

DC offset
accumulation

Spectrum Shaping: Offset Coding (I)
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• A solution :

Shape the spectrum away

from DC using coding-

allows smaller capacitor size.

• Additionally, we must use differential encoding for robustness to

oscillator frequency offset.

 HPF

 Data

f(MHz)

Spectrum Shaping: Offset Coding (II)
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• Example: 4-bit case DC-free spreading case

• Let (1101) and (0010) be spreading symbols for 0 and 1, resp.

If previous bit is 0

DC-free diff. encoded sequences: (1001) and (0011), resp.

If previous bit is 1

DC-free diff. encoded sequences: (0110) and (1100), resp.

• Independent of data, ... xxx 1xxx 0xxx 1xxx 0 ... pattern appears.

• Sharp tones - hard to meet FCC bandwidth requirement .

Spectrum Shaping: Offset Coding (III)
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• Our solution - introduce periodicity in spreading sequence.

• Example: 4-bit DC-free spreading case

• Let (1010) and (0111) be spreading symbols for 0 and 1, resp.

If previous bit is 0

Diff. encoded sequences: (1100) and (0101), resp.

If previous bit is 1

Diff. encoded sequences: (0011) and (1010), resp.

• Find such codes which minimize power close to DC .

Spectrum Shaping: Offset Coding (IV)
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• Chip rate = 10 Mchips/s, 500 kHz HPF, N = 1000 samples.
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15-bit PN

10-bit Offset

Offset Vs. PN codes : Simulated BER
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•  Front-end circuits:

- robust to strong out-of-band blockers

- acceptable noise performance with low power consumption

LNA

 passive
LPF

1st-order
 passive

HPF

1st-order

strong blockers
at mixer input

 eliminate

AGC

SAW filter

 passive
LPF

1st-order

MIXER

LNA/antenna
co-design

Receive Signal Path
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• Strong signals expected 500 MHz away (from Bluetooth spec.)

• Eliminate off-chip RF preselect filter: linearity and filtering hard.

Freq. (MHz)

30 2000 2364 2388 2498 2508 2520 3000

Min. Desired Signal = -72 dBm

-10 dBm
-27 dBm

-32 dBm

-42 dBm

-72 dBm

2376

B
lo

ck
er

 S
tr

en
gt

h 
(d

B
m

)
Receiver Out-of-band Blocking
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Andreani et al., “Noise optimization of an inductively degenerated CMOS low noise
amplifier”, IEEE TCAS II, vol. 48, pp. 835-841, Sept. 2001.

∆I

∆V

ITAIL

-ITAIL
IN+

IN-

VB2

Inductance
of Antenna

Cextra :
adds a degree
of freedom

elimination of ITAIL

for linearity at low curent

consumption

OUT

VB1

Low Noise Amplifier (I)
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Qmin Qmax

Gain Requirement Bound

Linearity Bound ( α Ibudget )

Cextra  = 0
 T

ra
ns

co
nd

uc
. (

g
m

)

Input Network Quality Factor ( Q)
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N
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(Ibudget , NF* )

NF*

Low Noise Amplifier (II)
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•  Need greater linearity in presence of strong blockers.

•  Expensive to generate very large LO swings at RF.

IN

OUT
PBIAS NBIAS

LO+ LO-

BIAS

BIAS

Our solution: a mixer with x-gates

X-Gate Mixer (I)
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•  Prototype mixer & filters built in 0.25 µm CMOS, tested at 1 GHz.
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•  A direct conversion architecture with simple HPF is utilized.

• Offset coding is introduced with differential encoding for spectral

shaping.

• The expensive pre-LNA band-select filter is eliminated.

• The X-gate mixer is introduced for linear downconversion.

• A passive chain is utilized for filtering blocker signals post down-

conversion.

• The passive receive chain (including mixer) has been fabricated

and tested at 1 GHz.

Receive Path Design Summary
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•  A critical analog block ...

- spurs
- phase noise

LNA FILTERS

MIXER

SYNTHESIZER

 adjacent
 channels

channel of interest

downconverted spectrumspectrum of local oscillator

Low-Power Frequency Synthesis
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• High frequency fO  = N fIN generated because of prescaler.

• Loop filter determines the dynamics of the loop.

Σ Loop Filter

Prescaler

fO = N fIN
+

-
Frequency
Reference

div-by- N

fIN
Output
Frequency

VCO

A Typical Frequency Synthesizer
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• One major source of power consumption:  high-frequency

prescaler in the synthesizer.
•

• Regular CMOS digital gates: Power scales as fCVDD
2 .

• How to deal with the high-frequency divider?

From
VCO

Low
FrequencyM 1÷ M2÷ MN÷

Power in Prescaler
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D Q

QCLK

D Q

QCLK

LATCH A LATCH B

CLK

CLK_DIV2

Q Q

D

D CLK
CLK

Source - coupled
D - latch

- lower power consumption

fCVDDVswing , but f  remains.

Divide-by-2 in Low-Swing Logic



28

• Analog frequency dividers have power VDDIBIAS.

• If loop gain is sufficient without injection, feedback system oscil-

lates at ffree-run .

• Regenerative system tracks fI , the injection frequency/phase over

some locking range. fI  must be close to ffree-run .

Filter Output
Inject productsNon-

Linearity

Analog Regenerative Dividers
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• A harmonic of ffree-run can also be injected : system is a phase-

locked divider.

fI = 2fO

fO
Nonlinear

Block

Filter

δ

δ

free-running

injection-locked

excess phase

excess phase

τ

Injection-locked Frequency Divider
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•  Characteristic first-order time constant τ: determines the

dynamic response, locking range and phase noise of the ILFD.

1/τ

free-running phase noise

input PN

ILFD phase noise

P
ha

se
 N

oi
se

 (
dB

c/
H

z) 20log( M)

Frequency (Hz) - log scale

Phase Noise of ILFD



31

•  We can do even better: eliminate a divide-by-3 circuit at the high-

frequency end.

• Oscillator has two outputs: one at 3fO, and one at fO.

Σ Loop Filter
+

-

fIN

fO = N fIN

3fO

N÷

A New Oscillator
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• Currents from all stages

of the ring are injected

into the LC tank and com-

bine to generate 3fO.

3fO

fO

A Multiply-by-3 Ring Oscillator
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• Ideally, output spectrum

contains only 3fO and its

harmonics.

• Due to device mismatch,

spurious tones at fO and

its harmonics appear.

}
T/3 2T/3 T0

i A

3 pulses

iA RP VO

+

-

Injected Current from One Ring
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• Single-ended, three stage

ring: Gaussian RV VT and

β for all NMOS devices
900 MHz

300 MHz

Qtank  = 3, RP = 600 Ω

3ωO 4ωO2ωO
600MHz 900MHz 1200MHz

CSR

30 40 50 60 70 80
0

50

100

150

200

Carrier-to-Spur Ratio (dB)

N
o.

 o
f O

cc
ur

re
nc

es

σ = 6 mV
σβ,rel  = 3%
VT

N = 1000

Simulated Effect of Stage Mismatch
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• Depends on sharpness of current injection, and DC current.

T/3
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j. 
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j. 

C
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V mult 2I DCRP=

V mult
4
π--- 

  2
I DCRP=

δ = 0

δ = 0.25T/3

2δ

Output Amplitude
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• Twice the voltage amplitude for twice the current consumption.

MultNodeA

MultNodeB

OutA

OutB

180o coupled rings

Oscillator: Differential Implementation
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MultNodeA MultNodeB

From prev.
stage of ring A

From prev.
stage of ring B

VCONTROL VCONTROL

VDDRING A RING B

To next stage
of ring B

To next stage
of ring A

Interstage Coupling
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• Get 100 mV voltage swing with IDC = 150 µA and RP = 600 Ω.
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Output Amplitude: Simulation at 900 MHz
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•  LC oscillator shown would ideally provide 115 mV voltage swing

with IDC = 150 µA and RP = 600 Ω.

V osc
4
π---I DCRP=

Vosc

IDC

∆I
+IDC

-IDC

∆I
assuming complete

switching

t

Comparison: Ideal LC Oscillator
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•  Prototype oscillator built in 0.25 µm CMOS - providing 300 MHz

and 900 MHz output frequencies.

• Operates at voltages as low as 1.3 V, while consuming 210 µA.

40 dB

10
3

10
4

10
5

10
6

10
7

−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

low freq. ( fO)

high freq. (3 fO)

P
ha

se
 N

oi
se

 (
dB

c/
H

z)

Frequency (Hz)

10 dB
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A Prototype VCO at 900 MHz
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• The power consumption of the high-frequency prescaler is identi-

fied as critical.

• After studying various low-power prescaler design techniques, a

new multiplier VCO is introduced.

• A prototype design has been fabricated and tested for 900 MHz

operation. It trades off phase noise performance for lower power

consumption.

Synthesizer Design Summary



42

Synthesizer
0.8 GHz 4 MHz2.4

GHzLO  Buf.

0o

90o

Pass. Filt.

Pass. Filt.

BUF

BUF I

Q

RF
IN

ChannelLNA
Select Select

Ref.

BUF

BUF

LNA

0/20dB

A Fully-Integrated Receiver at 2.45 GHz
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φ
detect.

0.8 GHz

2.4 GHz 4 MHz
Charge
Pump

2nd-Order
Filter

Integer Divider

Q

I

Increase Miller capacitance
to generate 90 o

BUFA

BUFI

BUFQ

LO Generation Circuits
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Reference Spurs: Measurements
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Performance Achieved Required

Passband Noise Fig. (@1.9 GHz) 8.8 dBa

a.   VGA needed after passive chain - not included in design.

< 18 dB

1-dB Blocker Compress. Pt. -15 dBm -20 dBm ( Qin = 3)

LO Phase Noise @24 MHz < -115 dBc/Hz <-111 dBc/Hz

Ref. Spur @24 MHz -45 dBc < -40 dBc

Signal Path Current 3 mA

Synth. Current @2.45 GHz 2.5 mA

LO Buffer Current 4 mA

Total Current 9.5 mA

Supply Voltage 1.8 V

Active Chip Area 0.66 mm2

Off-chip Components Inductor (ant.), crystal

Technology 0.25 µm CMOS

Performance Summary
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•  Implemented in 0.25 µm CMOS.

RECEIVED SIGNAL

LO FREQUENCY

SYNTHESIZER

PATH

BUFFERS

Receiver Die Photo
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0.18 µm CMOS

Conexant (‘01)

0.5 µm SiGe BiCMOS

Silicon Wave (‘02)
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Receiver Cost-Power Comparison
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• Contributed to the concurrent design of the system specifications

and circuits for the Zero-G system.

• Implemented a highly-integrated, low-power, low-cost receiver

frontend which:

- eliminates the band-select filter.

- linearly downconverts and filters strong blockers.

- implements a low-power synthesizer with a multiply-by-3

oscillator.

• Created and experimentally verified a unified model for injection-

locked frequency dividers.

Contributions
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• Required SNR  =

> 10 dB

• L(24 MHz) < -110.8 dBc/Hz

24 MHz

 30 dB Max.

Chan. Spacing: 12 MHz

 BW: 12 MHz

30–

Signal

10 12MHz( )log L 24MHz( )+[ ]–

Phase Noise from Interferer

                 

Phase Noise Requirement
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• Gain mismatch : for a gain mismatch of α, SNR degrades by α2.

-10% mismatch brings 0.9 dB of SNR degradation.

• Phase mismatch : for a phase mismatch of φ, signal power

reduced to 1/(1+φ) in the worst case.

- 10o mismatch brings 0.7 dB SNR degradation.

I-Q Mismatch
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•  Relaxed adjacent and alternate channel requirement.

• Eases phase noise and IIP3 required from the receiver.

0 dB

30 dB

0-12 +12 + 24

Relative Freq. (MHz)

Relative Power

- 24

Receiver In-band Blocking
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• IIP3 required is -19 dBm, limited by end buffers.

• IIP2 required is +1 dBm, limited by input symmetry.

sine
-39 dBm

modulated
-39 dBm

modulated
-69 dBm

f1 f2

>10 dBSNR

f0 = 2f1-f2

24 MHz

Second/Third-Order Intercept
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• Woven structure of M1-M2-M3-M4-M5 lines on top of poly-poly

capacitors.

A
B
A
B

A B A B

via

High-Density Capacitors
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Receive Path Gain/Power Distribution
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C1 C2

LNA Implementation
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• SAW filter after antenna = $0.30

• Crystal: +/- 10 ppm = $0.25; +/- 100 ppm = $0.15

• T/X Switch = $0.50

• RF Balun = $0.05

• Passives = $0.01 each (ignored)

• Cost of CMOS = $0.10/mm2, SiGe BiCMOS = 0.15/mm2

• Our work :

projected receiver power = 2*(9.5 mA*1.8) = 34.2 mW

projected Si area = 2*(0.66 mm2) = 1.3 mm2

No T/X switch, No SAW filter, +/- 100 ppm crystal.

Cost/Power Estimation Assumptions
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triangle approximation
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2

⋅=
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2
I DCRP=

Fourier coefficient at 2N π/T:

Using IDC = NQ/T  and Ztank  = RP ,

Output Amplitude: Calculation


