A Low-Cost, Low-Power Wireless Receiver

Shwetabh Verma

Center for Integrated Systems
Stanford University

Outline

- Motivation
- Introduction to Specifications Design
- Signal Path Design and Experimental Verification
- Synthesizer Design and Experimental Verification
- Final Receiver Design and Measurements

Motivation

Basic System Requirements

- Data rate: $1 \mathrm{Mb} / \mathrm{s}$.
- ISM band operation.
- A few channels (>5) for diversity/ multiple access.
- Robust modulation scheme.
- Range ~ 10 m .
- Implementable with very low-cost, low-power devices.

One Solution: Bluetooth

- State-of-the-art CMOS Bluetooth Radio (Ericsson, ISSCC 2002)

Data Rate: $\mathbf{1} \mathbf{~ M b} / \mathbf{s}$
Active Receiver Current $=\mathbf{3 0} \mathbf{~ m A}$
Active Transmit Current $=\mathbf{3 5 . 5} \mathbf{~ m A}$
Supply Voltage ~ 2.5-3 V
Active Radio Area $=4.0$ mm ${ }^{2}$
Technology: $0.18 \mu \mathrm{~m}$ CMOS
Offchip: Loop filter, SAW filter

Can we make some tradeoffs at the system level to lower costs?

Build a Simple System (I)

	Bluetooth	Zigbee	Zero-G
Data Rate	$1 \mathrm{Mb} / \mathrm{s}$	$250 \mathrm{~kb} / \mathrm{s}$	$1 \mathrm{Mb} / \mathrm{s}$
Spreading	FHSS, 79 Chan.	DSSS, 32-chip PN code	DSSS, 10-chip offset code
Modulation	BFSK	O-QPSK	DBPSK
Crystal Offset Tol.	20 ppm	80 ppm	200 ppm
Pulse Shaping	Gaussian	Half sine	Gaussian
Sensitivity	-70 dBm	-85 dBm	-75 dBm

- A new approach - concurrent design of circuits and system specifications.

Build a Simple System (II)

- Choose direct-sequence spreading (DSSS): Frequency Hopping (FHSS) places strict requirements on PLL settling
 time.
- Differential phase-shift keying (DPSK): robust to crystal frequency offset.

Build a Simple System (III)

- Choose channels: 2400 + $\mathbf{1 2 n} \mathbf{M H z}, n=1 . .6$.

- Relax oscillator phase noise requirement by using large interchannel spacing and guard bands.

Spectrum Shaping: Offset Coding (I)

- Choose direct conversion: low-power, area-efficient radio architecture.
- DC offset problem at output of mixer. Simple solution: Use large DC-blocking capacitor.

Problem : large capacitor for low cutoff frequency, low noise.

Spectrum Shaping: Offset Coding (II)

- A solution:

Shape the spectrum away from DC using codingallows smaller capacitor size.

- Additionally, we must use differential encoding for robustness to oscillator frequency offset.

Spectrum Shaping: Offset Coding (III)

- Example: 4-bit case DC-free spreading case
- Let (1101) and (0010) be spreading symbols for 0 and $\mathbf{1}$, resp.

If previous bit is 0
DC-free diff. encoded sequences: (1001) and (0011), resp.
If previous bit is 1
DC-free diff. encoded sequences: (0110) and (1100), resp.

- Independent of data, ... $\mathbf{x x x} \mathbf{1} \mathbf{x x x} \underline{0} x x \mathbf{1} \mathbf{x x x} \underline{0}$... pattern appears.
- Sharp tones - hard to meet FCC bandwidth requirement.

Spectrum Shaping: Offset Coding (IV)

- Our solution - introduce periodicity in spreading sequence.
- Example: 4-bit DC-free spreading case
- Let (1010) and (0111) be spreading symbols for 0 and 1, resp.

If previous bit is $\mathbf{0}$
Diff. encoded sequences: (1100) and (0101), resp.
If previous bit is $\mathbf{1}$
Diff. encoded sequences: (0011) and (1010), resp.

- Find such codes which minimize power close to DC.

Offset Vs. PN codes : Simulated BER

- Chip rate $=10$ Mchips/s, 500 kHz HPF, $\boldsymbol{N}=1000$ samples.

Receive Signal Path

- Front-end circuits:
- robust to strong out-of-band blockers
- acceptable noise performance with low power consumption

Receiver Out-of-band Blocking

- Strong signals expected 500 MHz away (from Bluetooth spec.)
- Eliminate off-chip RF preselect filter: linearity and filtering hard.

Low Noise Amplifier (I)

Andreani et al., "Noise optimization of an inductively degenerated CMOS low noise amplifier", IEEE TCAS II, vol. 48, pp. 835-841, Sept. 2001.

X-Gate Mixer (I)

- Need greater linearity in presence of strong blockers.
- Expensive to generate very large LO swings at RF.

X-Gate Mixer (II): DC Simulations

- NMOS - PMOS - Combined

Mixer Linearity: Measurements (I)

- Prototype mixer \& filters built in $0.25 \mu \mathrm{~m}$ CMOS, tested at 1 GHz .

Mixer Linearity: Measurements (II)

Passive Chain: Measurements

Receive Path Design Summary

- A direct conversion architecture with simple HPF is utilized.
- Offset coding is introduced with differential encoding for spectral shaping.
- The expensive pre-LNA band-select filter is eliminated.
- The X-gate mixer is introduced for linear downconversion.
- A passive chain is utilized for filtering blocker signals post downconversion.
- The passive receive chain (including mixer) has been fabricated and tested at 1 GHz .

Low-Power Frequency Synthesis

- A critical analog block ...

spectrum of local oscillator

downconverted spectrum

A Typical Frequency Synthesizer

- High frequency $\boldsymbol{f}_{\boldsymbol{O}}=\boldsymbol{N} \boldsymbol{f}_{\mathbf{I N}}$ generated because of prescaler.
- Loop filter determines the dynamics of the loop.

Power in Prescaler

- One major source of power consumption: high-frequency prescaler in the synthesizer.

- Regular CMOS digital gates: Power scales as $f C V_{D D}{ }^{2}$.
- How to deal with the high-frequency divider?

Divide-by-2 in Low-Swing Logic

- lower power consumption
$f C V_{D D} V_{\text {swing }}$, but \boldsymbol{f} remains.

Analog Regenerative Dividers

- Analog frequency dividers have power $V_{D D} I_{B I A S}$.

- If loop gain is sufficient without injection, feedback system oscillates at $\boldsymbol{f}_{\text {free-run }}$
- Regenerative system tracks $\boldsymbol{f}_{\boldsymbol{f}}$, the injection frequency/phase over some locking range. $\boldsymbol{f}_{\boldsymbol{l}}$ must be close to $\boldsymbol{f}_{\text {free-run }}$.

Injection-locked Frequency Divider

- A harmonic of $\boldsymbol{f}_{\text {free-run }}$ can also be injected : system is a phaselocked divider.

Phase Noise of ILFD

- Characteristic first-order time constant τ : determines the dynamic response, locking range and phase noise of the ILFD.

A New Oscillator

- We can do even better: eliminate a divide-by-3 circuit at the highfrequency end.
- Oscillator has two outputs: one at $\mathbf{3 \boldsymbol { f } _ { \boldsymbol { O } }}$, and one at $\boldsymbol{f}_{\boldsymbol{O}}$.

A Multiply-by-3 Ring Oscillator

Injected Current from One Ring

3 pulses

- Ideally, output spectrum contains only $3 f_{O}$ and its harmonics.
- Due to device mismatch, spurious tones at $\boldsymbol{f}_{\boldsymbol{O}}$ and its harmonics appear.

Simulated Effect of Stage Mismatch

- Single-ended, three stage ring: Gaussian RV V_{T} and β for all NMOS devices

$600 \mathrm{MHz} \quad 900 \mathrm{MHz} \quad 1200 \mathrm{MHz}$

Output Amplitude

$$
\left|V_{m u I t}\right|=2 I_{D C} R_{P}
$$

$$
\left|V_{m u I t}\right|=\left(\frac{4}{\pi}\right)^{2} I_{D C} R_{P}
$$

- Depends on sharpness of current injection, and DC current.

Oscillator: Differential Implementation

- Twice the voltage amplitude for twice the current consumption.

Interstage Coupling

RING A
 $V_{D D}$
 RING B

Output Amplitude: Simulation at 900 MHz

- Get $\mathbf{1 0 0} \mathbf{~ m V}$ voltage swing with $I_{D C}=150 \mu \mathrm{~A}$ and $\boldsymbol{R}_{P}=\mathbf{6 0 0} \Omega$.

Comparison: Ideal LC Oscillator

$$
\left|V_{o s c}\right|=\frac{4}{\pi} I_{D C} R_{P}
$$

- LC oscillator shown would ideally provide 115 mV voltage swing with $I_{D C}=150 \mu \mathrm{~A}$ and $R_{P}=600 \Omega$.

A Prototype VCO at 900 MHz

- Prototype oscillator built in $0.25 \mu \mathrm{~m}$ CMOS - providing 300 MHz and 900 MHz output frequencies.
- Operates at voltages as low as 1.3 V , while consuming $210 \mu \mathrm{~A}$.

Synthesizer Design Summary

- The power consumption of the high-frequency prescaler is identified as critical.
- After studying various low-power prescaler design techniques, a new multiplier VCO is introduced.
- A prototype design has been fabricated and tested for 900 MHz operation. It trades off phase noise performance for lower power consumption.

A Fully-Integrated Receiver at 2.45 GHz

LO Generation Circuits

Reference Spurs: Measurements

Required:

- $4 \mathrm{MHz}, 8 \mathrm{MHz}$ spurs, 20 dB below carrier.
- 24 MHz spur, 40 dB below carrier.

Eases charge pump design with 1.8 V supply.

Phase Noise Measurement

Blocker Sensitivity

Performance Summary

Performance	Achieved	Required
Passband Noise Fig. (@1.9 GHz)	$8.8 \mathrm{~dB}^{\mathrm{a}}$	$<18 \mathrm{~dB}$
1-dB Blocker Compress. Pt.	-15 dBm	$-20 \mathrm{dBm}\left(Q_{i n}=3\right)$
LO Phase Noise @24 MHz	$<-115 \mathrm{dBc} / \mathrm{Hz}$	$<-111 \mathrm{dBc} / \mathrm{Hz}$
Ref. Spur @24 MHz	-45 dBc	$<-40 \mathrm{dBc}$
Signal Path Current	3 mA	
Synth. Current @2.45 GHz	2.5 mA	
LO Buffer Current	4 mA	
Total Current	9.5 mA	
Supply Voltage	1.8 V	
Active Chip Area	0.66 mm	
Off-chip Components	Inductor (ant.), crystal	
Technology	$0.25 \mu \mathrm{~m} \mathrm{CMOS}$	

a. VGA needed after passive chain - not included in design.

Receiver Die Photo

- Implemented in $0.25 \mu \mathrm{~m}$ CMOS.

Receiver Cost-Power Comparison

Contributions

- Contributed to the concurrent design of the system specifications and circuits for the Zero-G system.
- Implemented a highly-integrated, low-power, low-cost receiver frontend which:
- eliminates the band-select filter.
- linearly downconverts and filters strong blockers.
- implements a low-power synthesizer with a multiply-by-3 oscillator.
- Created and experimentally verified a unified model for injectionlocked frequency dividers.

Publications

R. J. Betancourt-Zamora, S. Verma, T. H. Lee, "1-GHz and 2.8-GHz CMOS Injectionlocked Ring Oscillator Prescalers," Symposium on VLSI Circuits, June 14-16, 2001.
S. Verma, H. Rategh, and T. H. Lee, "A Unified Model for Injection-Locked Frequency Dividers," IEEE Journal of Solid-State Circuits, Volume 38, Issue 6, June 2003, pp 10151027.
S. Verma, J. Xu, T.H. Lee, "A Multiply-by-3 Coupled-Ring Oscillator for Low-power Frequency Synthesis," Symposium on VLSI Circuits, June 12-14, 2003, pp 189-192.
M. Hamada, S. Verma, J. Xu, T.H. Lee, "Completely DC-free Direct Sequence Spectrum Spreading Scheme for Low Power, Low Cost, Direct Conversion Transceiver," WNCG Wireless Networking Symposium, October 2003.
S. Verma, J. Xu, T.H. Lee, "A Multiply-by-3 Coupled-Ring Oscillator for Low-power Frequency Synthesis," IEEE Journal of Solid-State Circuits, Volume 39, Issue 4, April 2004, pp 709-713
S. Verma, J. Xu, M. Hamada, T.H. Lee, "A Low-Cost, Low-Power Wireless Receiver," IEEE Journal of Solid-State Circuits, under preparation.

Acknowledgments

- Prof. Tom Lee
- Prof. Khuri-Yakub, Prof. Wooley, Prof. Wong
- Ann Guerra
- SMIrC group, Prof. Wooley's group, Prof. Wong's group
- Mototsugu Hamada and Junfeng Xu
- National Semiconductor, Stanford Graduate Fellowships
- Friends!
- Family

Phase Noise Requirement

- Required SNR $=\underbrace{-30}_{\text {Signal }} \underbrace{-[10 \log (12 \mathrm{MHz})+L(24 \mathrm{MHz})]}_{\text {Phase Noise from Interferer }}$
$>10 \mathrm{~dB}$
- $L(24 \mathrm{MHz})<-110.8 \mathrm{dBc} / \mathrm{Hz}$

I-Q Mismatch

- Gain mismatch: for a gain mismatch of α, SNR degrades by α^{2}.
-10% mismatch brings 0.9 dB of SNR degradation.
- Phase mismatch: for a phase mismatch of ϕ, signal power reduced to $1 /(1+\phi)$ in the worst case.
- 10° mismatch brings 0.7 dB SNR degradation.

Receiver In-band Blocking

- Relaxed adjacent and alternate channel requirement.
- Eases phase noise and IIP3 required from the receiver.

Second/Third-Order Intercept

- IIP3 required is -19 dBm , limited by end buffers.
- IIP2 required is +1 dBm , limited by input symmetry.

High-Density Capacitors

- Woven structure of M1-M2-M3-M4-M5 lines on top of poly-poly capacitors.

Receive Path Gain/Power Distribution

$N F$	2.1 dB	4 dB	16 dB	1.5 dB
G_{AV}	-2.1 dB	9 dB	-16 dB	

Cumulative NF = 13.9 dB
System NF = 8.8 dB

PLL Implementation

LNA Implementation

Alternate Channel IIP3 (External LO)

X-Gate Mixer (III): DC Simulations

— NMOS —PMOS —Combined

Cost/Power Estimation Assumptions

- SAW filter after antenna = \$0.30
- Crystal: +/- 10 ppm = \$0.25; +/- 100 ppm = \$0.15
- T/X Switch = \$0.50
- RF Balun = \$0.05
- Passives = \$0.01 each (ignored)
- Cost of $\mathrm{CMOS}=\mathbf{\$ 0 . 1 0} / \mathbf{m m}^{\mathbf{2}}, \mathrm{SiGe} \mathrm{BiCMOS}=\mathbf{0 . 1 5} / \mathbf{m m}^{\mathbf{2}}$
- Our work :
projected receiver power $=2^{*}\left(9.5 \mathrm{~mA}^{*} 1.8\right)=34.2 \mathrm{~mW}$
projected Si area $=2^{*}\left(0.66 \mathrm{~mm}^{2}\right)=1.3 \mathrm{~mm}^{2}$
No T/X switch, No SAW filter, +/- 100 ppm crystal.

Output Amplitude: Calculation

Fourier coefficient at $\mathbf{2 N} \pi / \boldsymbol{T}$:

$$
\left|c_{1}\right|=\frac{N Q}{T} \cdot 2\left[\frac{\sin (N \pi \delta / T)}{(N \pi \delta / T)}\right]^{2}
$$

Using $I_{D C}=N Q / T$ and $Z_{\text {tank }}=R_{P}$,

$$
\left|V_{m u l t}\right|=2\left[\frac{\sin (N \pi \delta / T)}{(N \pi \delta / T)}\right]^{2} I_{D C} R_{P}
$$

