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Units of Phase Noise
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Internal noise sources set a fundamental limit for phase noise.
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Low frequency noise can be an important contributor to the system noise.

Thermal and 1/f Noise

log(f)
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Oscillator with Input Noise Sources
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Oscillator

Non-ideal waveform
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Noise current
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sources.

Noise voltage
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Oscillators Are Time-Variant Systems
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Impulse injected at the peak of amplitude.

∆V
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Even for an ideal LC oscillator, the phase response is Time Variant.

Impulse injected at zero crossing.
τ
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Once Introduced, phase error persists indefinitely.

Non-linearity quenches amplitude changes over time.
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Phase Impulse Response

φ t( )
hφ t τ,( )

0 t

i(t)

τ 0 τ

hφ t τ,( )
Γ ωoτ( )

qmax
-------------------u t τ–( )=

t

i t( )

The unit impulse response is:

Γ x( ) is a dimensionless function periodic in 2π, describing how much

phase change results from applying an impulse at time: t T
x

2π------=

The phase impulse response of an arbitrary oscillator is a time varying step.
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Impulse Sensitivity Function (ISF)

The ISF quantifies the sensitivity of every point in the waveform to perturbations.

Waveform

ISF
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LTV system Nonlinear system

Phase Noise Due to White Noise
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For a white input noise current with the spectral density of

The phase noise sideband power below carrier at an offset of ∆ω is:

Γrms is the rms value of the ISF.
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ISF is a periodic function:
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Noise components around integer multiples of the oscillation frequency have
the strongest effect on phase noise, and their effect is weighted by the Fourier
coefficients of the ISF, cn.

log(ω−ω0)



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

Outline

Introduction and Definitions

Time-Variant Phase Noise Model

Upconversion of 1/f Noise

Cyclostationary Noise Sources

Measurement Results

Conclusion

Substrate and Supply Noise



http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

c0
1
2π------ Γ x( )dx

0

2π

∫=

t

t

V out t( )

Γ ωt( )

Symmetric rise and fall time

t

t

V out t( )

Γ ωt( )

Asymmetric rise and fall time

Effect of Symmetry

The dc value of the ISF is governed by rise and fall time symmetry, and

controls the contribution of low frequency noise to the phase noise.
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1/f 3 Corner of Phase Noise Spectrum
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By designing for a symmetric waveform, the performance
degradation due to low frequency noise can be minimized.
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Ring Oscillator with an Asymmetric Stage

The effect of asymmetry can be seen by comparing the effect of

low frequency injection into symmetric and asymmetric nodes.
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Effect of Differential Symmetry

The noise sources on each of the differential nodes are not fully correlated.

It is the symmetry of the half circuit that matters.
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Effect of Differential Symmetry

Differential symmetry does not automatically eliminate the low frequency upconversion.
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Cyclostationary Properties, Time Domain
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Effective ISF:

A cyclostationary source can be modeled as stationary with a new ISF.

Noise Modulating Function (NMF)
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Fully Correlated Sources

Only the low frequency portion of substrate and supply noise is important, provided:

1. Stages and loadings are the same

2. The noise sources are identical

This is good news since c0 can be significantly
 reduced by adjusting the symmetry.
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Die Photo of the Complementary Oscillator
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Conclusion and Contributions

A new general model for phase noise is introduced, which:

● is useful both as an analysis and a design tool,

● is valid for arbitrary sources of noise and interference,

● is independent of the topology of the oscillator,

● predicts the effect of symmetry on the upconversion of 1/f noise,

● incorporates cyclostationary noise sources naturally,

● shows agreement among theory, simulation and measurements.

● reduces to previously existing models as special cases,

● predicts the effect of correlation on phase noise,
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