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Frequency Instability: Time Domain

Known As Clock Jitter.

(Oscillato\ y OO

D,

0000
0000
0000

Oscilloscope

®
\
y




http://smirc.stanford.edu/papers/Orals98s-ali.pdf Email: hajimiri@smirc.stanford.edu

Timing Jitter in Digital Applications
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Frequency Instability: Freguency Domain

Known As Phase Noise.
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Phase Noise In RF Applications
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The desired signal is buried under the phase noise of an adjacent strong channel.
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Units of Phase Noise
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Measured in dB below carrier per unit bandwidth.
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Thermal and 1/f Noise
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Low frequency noise can be an important contributor to the system noise.
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Substrate and Supply Noise
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Oscillator with Input Noise Sources
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Oscillators Are Time-Variant Systems
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Even for an ideal LC oscillator, the phase response is Time Variant.
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Amplitude Restoring Mechanism
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Once Introduced, phase error persists indefinitely.
Non-linearity quenches amplitude changes over time.
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Impulse Response of a Relaxation Osclillator
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Impulse Response of a Ring Oscillator
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Phase Impulse Response

The phase impulse response of an arbitrary oscillator is a time varying step.
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The unit impulse response is:
(0w 1)

h(p(t, 1) = u(t—r)

max

[(x) is a dimensionless function periodic in 21t describing how much

phase change results from applying an impulse at time: ¢t = T%[
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Impulse Sensitivity Function (ISF)

LC Oscillator Ring Oscillator
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The ISF quantifies the sensitivity of every point in the waveform to perturbations.
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Phase Response to an Arbitrary Source
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Phase Noise Due to White Noise

LTV system Nonlinear system

O ] g 2 cofagtrom)

2

i
For a white input noise current with the spectral density of _”_f
A

The phase noise sideband power below carrier at an offset of Aw Is:
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[ 'ms IS the rms value of the ISF.
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ISF Decomposition

ISF is a periodic function:
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Noise Contributions from nwy,
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Power Spectrum of Phase Noise

PSD of ((f) PSD of V(1)

Amplifier Noise Floor

w w =
Foo o0 Jog(w~c)

Noise components around integer multiples of the oscillation frequency have
the strongest effect on phase noise, and their effect is weighted by the Fourier
coefficients of the ISF, c,,.
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Effect of Symmetry
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The dc value of the ISF is governed by rise and fall time symmetry, and

controls the contribution of low frequency noise to the phase noise.
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1/f3 Corner of Phase Noise Spectrum

The 1/f3 corner of phase noise is NOT the same as 1/f corner of device noise
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By designing for a symmetric waveform, the performance
degradation due to low frequency noise can be minimized.
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Ring Osclillator with an Asymmetric Stage
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The effect of asymmetry can be seen by comparing the effect of

low frequency injection into symmetric and asymmetric nodes.
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Low Frequency Upconversion
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Effect of Rise and Fall Time Symmetry

Sidebands Due to Low Frequency Injection
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Effect of Differential Symmetry
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The noise sources on each of the differential nodes are not fully correlated.

It is the symmetry of the half circuit that matters.
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Effect of Differential Symmetry

Low Frequency Current Injection into Differential Ring
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Differential symmetry does not automatically eliminate the low frequency upconversion.
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A Symmetric LC Oscillator
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Possible to Adjust Symmetry Properties of the Waveform
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Time Varying Current in Colpitts Oscillator
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Cyclostationary Properties, Time Domain
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Effective ISF:
Moff(¥) = T(x) (x)

i (1) = i o(t) a(wyt)

A cyclostationary source can be modeled as stationary with a new ISF.
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Colpitts Oscillator
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5 Stage Ring Oscillator
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Fully Correlated Sources
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Fully Correlated Sources
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Only the low frequency portion of substrate and supply noise is important, provided:

1. Stages and loadings are the same

2. The noise sources are identical

This is good news since cy can be significantly
reduced by adjusting the symmetry.
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Noise Contributions from nwy,
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Injection at Integer Multiples of f,
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Sideband Power vs. Injection Current

Sideband Power below Carrier (dBc)
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Symmetric vs. Asymmetric Ring Oscillator
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5-Stage Single-Ended Ring Oscillator

fo=232MHz, 2um Technology

i -30F Predicted: -
@ )
<) L{Af} = 10log(0.84/Af?)
N
T L{500kHZ = —114.728¢
5 Hz
o W, = 75kHz
@ IE
§ 80
2 i Measured: i
O
I L{500kHZ} = —114.89B¢
g Hz
8 ool = 80kHz
(D] f3
S
N !
-130 T N
102 103 104 10° 100

Offset from the Carrier (Hz)



http://smirc.stanford.edu/papers/Orals98s-ali.pdf

Email: hajimiri@smirc.stanford.edu

11-Stage Single-Ended Ring Oscillator
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O-Stage Current Starved Single-Ended VCO
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Complementary Cross-Coupled LC Oscillator
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Complementary Cross-Coupled VCO
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Phase noise below carrier at 600kHz offset
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Complementary vs. NMOS-Only VCO

fo=1.8GHz, 0.25um Process

12—

-114 -

-116 —

-118~ -

-120— . -

—122\”.,v.,v.,'..

vdd
—




http://smirc.stanford.edu/papers/Orals98s-ali.pdf

Email: hajimiri@smirc.stanford.edu

Die Photo of the Complementary Oscillator
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Conclusion and Contributions

A new general model for phase noise is introduced, which:

e is independent of the topology of the oscillator,

e s useful both as an analysis and a design tool,

e s valid for arbitrary sources of noise and interference,

e predicts the effect of symmetry on the upconversion of 1/f noise,
e incorporates cyclostationary noise sources naturally,

e predicts the effect of correlation on phase noise,

e reduces to previously existing models as special cases,

e shows agreement among theory, simulation and measurements.
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