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Optimal Allocation of Local Feedback in Multistage
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Abstract—We consider the problem of optimally allocating local
feedback to the stages of a multistage amplifier. The local feed-
back gains affect many performance indexes for the overall ampli-
fier, such as bandwidth, gain, rise time, delay, output signal swing,
linearity, and noise performance, in a complicated and nonlinear
fashion, making optimization of the feedback gains a challenging
problem. In this paper, we show that this problem, though compli-
cated and nonlinear, can be formulated as a special type of opti-
mization problem called geometric programming. Geometric pro-
grams can be solved globally and efficiently using recently devel-
oped interior-point methods. Our method, therefore, gives a com-
plete solution to the problem of optimally allocating local feedback
gains, taking into account a wide variety of constraints.

Index Terms—Amplifiers, analog circuits, circuit optimization,
design automation, geometric programming, sensitivity.

I. INTRODUCTION

T HE USE of linear feedback around an amplifier stage was
pioneered by Black [1], Bode [2], and others. The relation

between the choice of feedback gain and the (closed-loop) gain,
bandwidth, rise-time, sensitivity, noise, and distortion proper-
ties, is well understood (see, e.g., [3]). For a single-stage ampli-
fier, the choice of the (single) feedback gain is a simple problem.

In this paper we consider themultistageamplifier shown
in Fig. 1, consisting of open-loop amplifier stages denoted

, with local feedback gains employed
around the stages.

We assume that the amplifier stages are fixed, and consider
the problem of choosing the feedback gains . The
choice of these feedback gains affects a wide variety of perfor-
mance measures for the overall amplifier, including gain, band-
width, rise time, delay, noise, distortion, and sensitivity proper-
ties, maximum output swing, and dynamic range. These perfor-
mance measures depend on the feedback gains in a complicated
and nonlinear manner. It is thus far from clear, given a set of
specifications, how to find an optimal choice of feedback gains.
We refer to the problem of determining optimal values of the
feedback gains, for a given set of specifications on overall am-
plifier performance, as thelocal feedback allocation problem.

We will show that the local feedback allocation problem can
be cast as ageometric program(GP), which is a special type
of optimization problem. Even complicated GPs can be solved
very efficiently, and globally, by recently developed interior-
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Fig. 1. Block diagram of multistage amplifier.

point methods (see [4]–[6]). Therefore, we are able to give a
complete, global, and efficient solution to the local feedback
allocation problem.

In Section II, we give a detailed description of the models of
an amplifier stage used to analyze the performance of the am-
plifier. Though simple, the models capture the basic qualitative
behavior of a source-degenerated differential pair. In Section III,
we derive expressions for the various performance measures for
the overall amplifier, in terms of the local feedback gains. In
Section IV, we give a brief description of geometric program-
ming, and in Section V, we put it all together to show how the
optimal local feedback allocation problem can be cast as a GP.
Design examples are given in Section VI, and analysis for a cas-
cade of source-coupled pairs is performed in the Appendix.

II. A MPLIFIER STAGE MODELS

In this section we describe several different models of an am-
plifier stage, used for different types of analysis.

A. Linearized Static Model

The simplest model we use is the linear static model shown
in Fig. 2. The stage is characterized by , where is
the gain of the th stage, which we assume to be positive. We
will use this simple model for determining the overall gain of
the amplifier, determining the maximum signal swing, and the
sensitivity of the amplifier gain to each stage gain.

B. Static Nonlinear Model

To quantify nonlinear distortion effects, we will use a static
nonlinear model of the amplifier stage as shown in Fig. 3. We
assume that the nonlinearity or transfer characteristic has the
form

(1)

This form is inspired by the transfer characteristic of a source-
coupled pair [7], and is a general model for third-order nonlin-
earity in a stage with an odd transfer characteristic. The function

is called thetransfer characteristicof the th stage, and
is called thethird-order coefficientof the amplifier stage. Note

1057–7122/01$10.00 © 2001 IEEE
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Fig. 2. Linearized static model of amplifier stage.

Fig. 3. Nonlinear static model of amplifier stage.

that the gain and third-order coefficient are related to the transfer
characteristic by

(2)

We assume that , which means the third-order term is
compressive: as the signal level increases from zero, the non-
linear term tends to decrease the output amplitude when com-
pared to the linear model.

C. Linearized Dynamic Model

To characterize the bandwidth, delay, and rise time of the
overall amplifier, we use the linearized dynamic model shown
in Fig. 4. Here the stage is represented by a simple one-pole
transfer function with time constant (which we assume to be
positive).

D. Static Noise Model

Finally, we have the static noise model shown in Fig. 5, which
includes a simple output-referred noise. As will become clear
later, more complicated noise models including input noise, or
noise injected in the feedback loop, are also readily handled by
our method. Our noise model is characterized by the rms value
of the noise source, which we denote. We assume that noise
sources associated with different stages are uncorrelated.

III. A MPLIFIER ANALYSIS

In this section, we derive expressions for various performance
indexes for the overall amplifier, which we express in terms of
thereturn differencesof the stages, defined as

(3)

Fig. 4. Linear dynamic model of amplifier stage.

Fig. 5. Static noise model of amplifier stage.

A. Gain and Output Swing

We consider the linear static model of Section II-A. The gain
of the amplifier, from input to the output of the th stage ,
is given by

(4)

and the overall gain, from to , is given by

(5)

Here, of course, is the familiar expression for the
closed-loop gain of theth stage. It will be convenient later to
use the notation

(6)

to denote the closed-loop gain of theth stage. (In general, we
will use the tilde to denote a closed-loop expression.)

Now suppose the input signal level is , and that the
th stage has a maximum allowed output signal level of, i.e.,

we require . This in turn means that for ,
we have

(7)

so the maximum allowed input signal level is

(8)
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The maximum allowed output signal level is found by multi-
plying by the overall gain

(9)

(where the empty product, when , is interpreted as one).

B. Sensitivity

The (logarithmic) sensitivity of the overall amplifier gain to
the open-loop gain of theth stage is given by

(10)

C. Nonlinearity

We begin by deriving the closed-loop third-order coefficient
of a single feedback amplifier stage, using the static nonlinear
model of Section II-B. The output is related to the input
through the relation

(11)

Differentiating both sides with respect toleads to the familiar
result from elementary feedback theory

(12)

Differentiating again yields

(13)

and, once more

(14)

using and from the previous equa-
tion. This equation shows that the third-order coefficient of the
closed-loop transfer characteristic is given by

(15)

This is the well-known result showing the linearizing effect of
(linear) feedback on an amplifier stage.

Next, let us consider a cascade of two amplifier stages. Let
the transfer characteristics of two stages be and . We
write

(16)

and differentiate

(17)

and so

(18)

Since and are both odd functions, the last term vanishes.
This shows that the third-order coefficient of the cascade of the
two stages in given by

(19)

More generally, the third-order coefficient of a cascade of
stages can be expressed as

(20)

This very complicated formula gives the relation between the
local return differences and the third-order coefficient of the
overall amplifier.

D. Bandwidth

We next examine the linearized dynamic performance of the
amplifier chain, using the stage model given in Section II-C. The
transfer function of an individual stage is given by

(21)

where is the closed-loop time constant of theth
stage. The transfer function of the entire cascade amplifier im-
mediately follows

(22)

The 3-dB bandwidth of the amplifier is defined as the
smallest frequency for which .

E. Delay and Rise Time

The rise time and delay of the overall amplifier can be char-
acterized in terms of the moments of the impulse response, as
described in [8]. The delay is the normalized first moment of the
impulse response of the system

(23)

Using basic properties of the Laplace transform and results from
Section III-D, we have

(24)

This formula shows the exact relation between the overall am-
plifier delay (as characterized by the first moment of the impulse
response) and the local return differences.

We use the second moment of the impulse response,

(25)

as a measure of the square of the rise time of the overall amplifier
in response to a step input. Again, making use of Laplace trans-
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form identities, we express (25) in terms of the transfer function

(26)

Substituting the transfer function of the amplifier, given in (22),
we find that the rise time of the overall amplifier is

(27)

(using the fact that the closed-loop rise time of theth stage is
).

F. Noise and Dynamic Range

We now consider the static noise model of Section II-D. The
mean-squared noise amplitude at the output of the overall am-
plifier can be written

(28)

The input-referred mean-squared noise is then

(29)

Thedynamic range(DR) of the amplifier is the ratio of max-
imum output range to output referred rms noise level, expressed
in decibels

(30)

G. SFDR and IIP Linearity Measures

We conclude this analysis by obtaining expressions for the
spurious-free dynamic range (SFDR) and the input-referred
third-order intercept point (IIP3). They are both readily derived
from the results in Section III-C–III-F, and so contain no new
information or analysis, but they are widely used performance
indices for the amplifier.

SFDR and IIP3 give information about the linearity of an am-
plifier. They concern the results of the following experiment:
inject a signal at the input, and examine
the output for the presence of intermodulation (IM) products.
We concern ourselves here with third-order IM products, which
owe their existence to nonzero. The third-order intermodula-
tion products are

(31)

The SFDR is defined as the signal-to-noise ratio when the
power in each third-order IM product equals the noise power
at the output [9]. It is straightforward to derive: simply refer
a third-order IM product back to the input and equate to the
input-referred rms noise amplitude

(32)

The SFDR in decibels is then given by

SFDR (33)

The IIP3 is the input power at which the amplitude of the
third-order IM products equals the input. Mathematically, we
require

(34)

Normalizing the input resistance to unity for convenience, we
have for IIP3

IIP (35)

IV. GEOMETRIC PROGRAMMING

Let be a real-valued function of real, positive variables
. It is called aposynomialfunction if it has the

form

(36)

where and . When is called amonomial
function. Thus, for example, is posynomial
and is a monomial. Posynomials are closed under
sums, products, and nonnegative scaling.

A geometric program(GP) has the form

minimize

subject to

(37)

where are posynomial functions and are monomial func-
tions. GPs were introduced by Duffin, Peterson, and Zener in
the 1960s [10].

The most important property of GPs for us is that they can be
solved, with great efficiency, and globally, using recently devel-
oped interior-point methods [6], [4]. Geometric programming
has recently been used to optimally design electronic circuits
including CMOS op-amps [11], [12], and planar spiral induc-
tors [13].

Several simple extensions are readily handled by geometric
programming. If is a posynomial and is a monomial, then
the constraint can be expressed as
(since is posynomial). In particular, constraints of the form

, where is a constant, can also be used. Sim-
ilarly, if and are both monomial functions, the constraint

can be expressed as (since
is monomial). If is a monomial, we can maximize it by

minimizing the posynomial function .

A. Geometric Programming in Convex Form

A GP can be reformulated as aconvex optimization problem,
i.e., the problem of minimizing a convex function subject to
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convex inequalities constraints and linear equality constraints.
This is the key to our ability to globally and efficiently solve
GPs. We define new variables , and take the loga-
rithm of a posynomial to get

(38)

where and . It can be shown
that is aconvexfunction of the new variable: for all

and we have

(39)

Note that if the posynomial is a monomial, then the trans-
formed function is affine, i.e., a linear function plus a constant.

We can convert the standard GP (37) into a convex program
by expressing it as

minimize

subject to

(40)

This is the so-calledconvex formof the GP (37). Convexity of
the convex form GP has several important implications: we can
use efficient interior-point methods to solve them, and there is a
complete and useful duality, or sensitivity theory for them [4].

B. Solving Geometric Programs

Since Ecker’s survey paper there have been several important
developments related to solving GPs in the exponential form. A
huge improvement in computational efficiency was achieved in
1994, when Nesterov and Nemirovsky developed efficient in-
terior-point algorithms to solve a variety of nonlinear optimiza-
tion problems, including geometric programs [6]. Recently, Ko-
rtaneket al.have shown how the most sophisticated primal–dual
interior-point methods used in linear programming can be ex-
tended to geometric programming, resulting in an algorithm
approaching the efficiency of current interior-point linear pro-
gramming solvers [14]. The algorithm they describe has the de-
sirable feature of exploiting sparsity in the problem, i.e., effi-
ciently handling problems in which each variable appears in
only a few constraints.

For our purposes, the most important feature of GPs is that
they can begloballysolved with great efficiency. Problems with
hundreds of variables and thousands of constraints are readily
handled, on a small workstation, in minutes; the problems we
encounter in this paper, which have a few tens of variables and
fewer than 100 constraints, are easily solved in under 1 s.

Perhaps even more important than the great efficiency is the
fact that algorithms for geometric programming always obtain
the global minimum. Infeasibility is unambiguously detected: if
the problem is infeasible, then the algorithm will determine this
fact, and not just fail to find a feasible point. Another benefit
of the global solution is that the initial starting point is irrele-
vant: the same global solution is found no matter what the initial
starting point is.

These properties should be compared to general methods for
nonlinear optimization, such as sequential quadratic program-
ming, which only findlocally optimal solutions, and cannot un-
ambiguously determine infeasibility. As a result, the starting

point for the optimization algorithm does have an effect on the
final point found. Indeed, the simplest way to lower the risk
of finding a local, instead of global, optimal solution, is to run
the algorithm several times from different starting points. This
heuristic only reduces the risk of finding a nonglobal solution.
For geometric programming, in contrast, the risk is always ex-
actly zero, since the global solution is always found regardless
of the starting point.

V. OPTIMAL LOCAL FEEDBACK ALLOCATION

We now make the following observation, based on the results
of Section III: a wide variety of specifications for the perfor-
mance indexes of the overall amplifier can be expressed in a
form compatible with geometric programming using the vari-
ables . The startling implication is that optimal feedback allo-
cation can be determined using geometric programming.

The true optimization variables are the feedback gains, but
we will use instead the return differences, with the constraints

imposed to ensure that . Once we determine the
optimal values for , we can find the optimal feedback gains via

(41)

A. Closed-Loop Gain

The closed-loop gain is given by the monomial expres-
sion (5). Therefore, we can impose any type of constraint on
the closed-loop gain: we can require it to equal a given value, or
specify a minimum or maximum value for the closed-loop gain.
Each of these constraints can be handled by geometric program-
ming.

B. Maximum Signal Swing

The maximum output signal swing is given by (9). The con-
straint that the output swing exceed a minimum required value,
i.e., , can be expressed as

(42)

Each of these inequalities is a monomial inequality, and hence
can be handled by geometric programming. Note that we also
allow the bound on signal swing, i.e.,, as a variable here.

C. Sensitivity

The sensitivity of the amplifier to theth stage gain is given
by the monomial expression (10). It follows that we can place an
upper bound on the sensitivity (or, if we choose, a lower bound
or equality constraint).

D. Bandwidth

Consider the constraint that the closed-loop3 dB bandwidth
should exceed . Since the magnitude of the transfer function
of the amplifier is monotonically decreasing as a function of
frequency, this is equivalent to imposing the constraint

(43)
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which we can rewrite as

(44)

Now using the expression for the transfer function

(45)

we can write the bandwidth constraint as

(46)

In turn, we can express this as

(47)

This is a complicated, but posynomial, inequality in the vari-
ables , hence it can be handled by geometric programming.
Note that we can even make the minimum3 dB bandwidth
a variable, and maximize it.

E. Noise and Dynamic Range

Expression (29) for the input-referred noise power, is a posyn-
omial function of the variables . Therefore, we can im-
pose a maximum on the input-referred noise level, using geo-
metric programming.

The requirement that the dynamic range exceed some min-
imum allowed value DR , i.e., DR DR , can be ex-
pressed as

(48)

where is the bound on signal swing defined in (42). Therefore,
this constraint can be handled by geometric programming.

F. Delay and Rise Time

As can be seen in (24) and (27), the expressions for delay and
rise time are posynomial functions of the return differences.
A maximum on each can thus be imposed.

G. Third-Order Distortion

The expression for third-order coefficient, given in (20), is a
posynomial, so we can impose a maximum on the third-order
coefficient.

H. SFDR and IIP3

Consider the constraint that the SFDR should exceed some
minimum value . Using the expression (33), we can write this
as

(49)

This can be written as

(50)

Fig. 6. Maximum bandwidth versus limit on input-referred noise.

This can be handled by geometric programming by writing it as

(51)

VI. DESIGN EXAMPLES

We have shown that complicated problems of feedback allo-
cation can be solved, globally and efficiently, using geometric
programming. We can take as an objective any of the posyn-
omial performance measures described above, and apply any
combination of the constraints described above. We can also
compute optimal tradeoff curves by varying one of the specifi-
cations or constraints over a range, computing the optimal value
of the objective for each value of the specification.

We provide in this section a few system-level examples. In
the Appendix, we demonstrate a circuit-level application using
the common source-coupled pair.

A. Tradeoffs Among Bandwidth, Gain, and Noise

In our first example we consider a three-stage amplifier, with
all stages identical, with parameters

s V (52)

The required closed-loop gain is 23.5 dB. We maximized the
bandwidth, subject to the equality constraint on closed-loop
gain, and a maximum allowed value of input-referred noise.

Fig. 6 shows the optimal bandwidth achieved, as a function
of the maximum allowed input-referred noise. As it must, the
optimal bandwidth increases as we relax (increase) the input-re-
ferred noise limit. Fig. 7 shows the optimal values of the feed-
back gains as the input-referred noise limit varies.

These curves roughly identify two regions in the design
space. In one, the noise constraint is so relaxed as to not be an
issue. The program identifies the optimum bandwidth solution
for the given gain, which is to place all of the closed loop
poles in the same place. In the other, the tradeoff between
bandwidth and noise is strong. Equation (29) shows that the
noise contribution of is independent of , but the noise
contributions of the following stages can be diminished by
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Fig. 7. Optimal feedback allocation pattern, for maximum bandwidth with
limit on input-referred noise. Gain= 23.5 dB.

Fig. 8. Maximum bandwidth versus required closed-loop gain. Maximum
input-referred noise= 4.15 V rms.

making (and therefore ) small. It follows that is the
greatest of the feedback gains, followed byand .

We can also examine the optimal tradeoff between bandwidth
and required dc gain. Here we impose the fixed limit on input-
referred noise at V rms, and maximize the bandwidth
subject to a required closed-loop gain.

Figs. 8 and 9 show the maximum attainable bandwidth and
the optimal feedback gain allocation as a function of the re-
quired closed-loop gain. Again, we see two regions in design
space caused by the noise constraint.

B. SFDR versus Gain

In this example, we again consider a three-stage amplifier,
now with identical stages having parameters

V V (53)

We maximize the spurious-free dynamic range subject to
an equality constraint on the overall gain. Fig. 10 shows the

Fig. 9. Optimal feedback allocation pattern for maximum bandwidth versus
required closed-loop gain. Maximum input-referred noise= 4.15 V rms.

Fig. 10. Maximum spurious-free dynamic range versus required gain.

achieved SFDR as a function of the required gain, and Fig. 11
shows the associated optimal gain allocation patterns.

In addition to obtaining optimal designs from the Figs. 10 and
11, we observe a qualitative trend: feedback gain is allocated
preferentially to stages furthest down the signal chain. This is
in agreement with sound engineering judgment, and with the
results of Section VI-A.

We can also argue from the standpoint of optimum linearity
that Fig. 11 makes sense. Nonlinearity in the later stages, where
the signal amplitude is the largest, will cause the most severe
harmonic distortion. It follows that feedback should be applied
more aggressively in later stages.

C. Stage Selection

The method described in this paper computes the globally
optimal values of the local feedback gains, with the amplifier
models fixed. We can use the method indirectly to optimally
choose each stage, from a set of possible choices, in addition
to optimally allocating feedback around the stages. Suppose we
have a set of possible choices for each ofstages. By com-
puting the optimal performance for each possible combi-
nations of stages, we can then determine the optimal combina-
tion as well as the optimal feedback gains. Of course, the effort
required to exhaustively search over the combinations grows
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Fig. 11. Optimal feedback allocation pattern for maximum spurious-free
dynamic range versus required gain.

TABLE I
CANDIDATE STAGES

rapidly with the number of stages, but is certainly feasible for
moderate numbers of stages, e.g., fewer than six or so.

We demonstrate this method for optimal stage selection with
an example. Table I shows a listing of three candidate stages for
use in a multistage amplifier design. Amplifier can be seen
to have best linearity and the worst noise; amplifierhas the
worst linearity and the best noise, and amplifieris in between.

Our goal is to maximize SFDR, subject to a required gain of
46 dB, for a three-stage design. By solving all 27 combinations,
we find that the optimal combination of stages and feedback is

Stage 1:amplifier , with .
Stage 2:amplifier , with .
Stage 3:amplifier , with ,

which achieves the optimal SFDR of 85 dB.
This solution makes sense: the low-noise stage is used for

the first stage (which is more critical for noise, since its noise
is amplified by subsequent stages); the high-linearity stage is
used for the last stage (which handles larger signals, and so is
more critical for distortion). Note that in this particular case,
the optimal solution is to operate the first two stages essentially
open loop.

VII. CONCLUSION

We have shown how to globally and efficiently solve the
problem of optimally allocating local feedback gains in a multi-
stage amplifier by posing the problem in the form of a GP. This
formulation can handle a wide variety of practical objectives
and constraints, and allows us to rapidly compute globally
optimal tradeoff curves between competing specifications.

We mention several extensions which are readily handled. It
is not hard to work out the corresponding (posynomial) formulas
for distortion characteristics that are not symmetric, in which the
second-order term dominates. It is also easy to handle a more
sophisticated noise model, in which the noise is injected at sev-
eral locations in the feedback around each stage, and not just at

Fig. 12. CMOS source-coupled pair and differential half-circuit.

the output as in the current model. In each case, the resulting
noise power expression is still posynomial, and, therefore, can
be handled by geometric programming. Another extension is
to couple the design of the feedback together with the actual
component-level design of the amplifier (for example, transistor
widths and lengths) as in [15].

We envision several situations where the methods described
in this paper would be very useful to a circuit designer. When-
ever the number of stages is at least three, and the number of im-
portant specifications is at least three (say), the problem of op-
timally allocating local feedback gains becomes quite complex,
and a tool that completely automates this process is quite useful.
When the number of stages reaches five or six, and the absolute
optimal performance is sought, our method will far outperform
even a good designer adjusting gains in anad hocmanner.

APPENDIX

AN APPLICATION

The foregoing analysis has established feedback allocation
as a solvable problem. The extension of our technique to
real-world applications, however, begs clarification: we have
(seemingly) ignored loading between stages, chosen suspi-
ciously simple single-pole dynamics, etc. We thus include this
appendix, in which we consider the ubiquitous source-coupled
pair as our basic open-loop stage. Local feedback is allocated
in the form of source degeneration, and all other characteristics
(bias currents, load resistances, transistor sizes, etc.) are fixed.1

Fig. 12 shows the basic stage that we consider. The differ-
ential half-circuit on the right should not be taken to represent
the traditional “small-signal” model, as the dependent current
source models a MOSFET operating in the saturation regime.
The capacitors and are linear capacitors [9], and the
PMOS devices provide the resistances. We show in the se-
quel how this common structure maps to the theoretical frame-
work outlined in Section II.

A. Linearized Static Model

For this model, the capacitors shown in Fig. 12 become open
circuits, and the mapping from Figs. 2 to 13 is straightforward.
A few short lines of algebra lead to the familiar gain expression

(54)

Already, it can be seen thatfrom the foregoing analysis finds
its place here as , with taking the place of feed-
back gain. We emphasize that this is not merely a mathematical

1These, too, can be optimized via geometric programming; see [12] and [11].



DAWSON et al.: OPTIMAL ALLOCATION OF LOCAL FEEDBACK IN MULTISTAGE AMPLIFIERS VIA GEOMETRIC PROGRAMMING 9

Fig. 13. Source degeneration as a form of feedback.

Fig. 14. Modification for nonlinear static model.

accident, but points to the physically meaningful interpretation
of degeneration as a feedback mechanism.

B. Static Nonlinear Model

In Fig. 14, we modify Fig. 13 by replacing with ,
the nonlinear expression for drain current as a function of.
The expression for differential output current as a function of
differential input voltage for a source-coupled pair is given in
Gray and Meyer [7]. We reproduce it here, whereand are
understood to be differential signals

(55)

All constants in this formula are MOSFET parameters, and
is the value of the current source in Fig. 12. A Taylor expansion
of the square root allows us to write as

(56)

This is consistent with Fig. 3.

C. Linearized Dynamic Model

We use the Miller approximation described in Gray and
Meyer [7], modified here to account for source degeneration.
The Miller approximation (see Fig. 15) is the recognition that
the dynamics of a single stage are dominated by a single pole,
which arises from the interaction between source resistance

and the input capacitance. With no source degeneration,
this input capacitance would be the sum of and the Miller
multiplied

(57)

where we have made the approximation that the gain
is significantly greater than unity. This capacitance, to-

gether with the source resistance, creates a pole with time con-
stant

(58)

Fig. 15. Modeling dynamics using the Miller approximation.

Source degeneration causes the real part of the impedance
looking into the gate to increase. At frequencies below the
transistor’s , however, the capacitive part still dominates and
we replace in the Miller formulation with

(59)

Source degeneration reduces the gain of the stage from
to

(60)

Our capacitance is accordingly modified to

(61)

(We continue to assume that is much greater than unity.)
Finally, it can be seen that the effect of feedback has been to
reduce the time constant of the pole by a factor of the return
difference , exactly as was shown in Section III-D

(62)

If we define as in (58), it can be seen that the source-coupled
pair maps perfectly to Fig. 4.

Finally, note that the dynamics here, which are the poles
formed by the output impedance of stagewith the input
capacitance of stage , are the interstage loading effects.

1) An Alternative Formulation: Open-Circuit Time Con-
stants: For bandwidth optimization in pure circuit systems,
it is often useful to use the method of open-circuit time
constants. The method may be summarized as computing the
resistance seen across the terminals of capacitorswith
all other capacitors considered open circuits. The frequency

has been shown to be a good estimate of the
3 dB bandwidth for many common circuits. Moreover, this

estimate, when applicable, is always conservative. We direct
the interested reader to the excellent discussions in [7] and [9].
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Fig. 16. MOSFET noise model.

Fig. 17. MOSFET gate and drain noise.

We present this method as an alternative. For a given stage,
the open-circuit resistance for can be shown to be

(63)

a simple posynomial in the design variable . For
, the result is

(64)

which we write as the posynomial in

(65)

D. Static Noise Model

There are two sources of noise in MOSFETs with a common
physical origin: drain noise and gate noise [9]. Fig. 16 shows
their places in the MOSFET model. Their corresponding places
in our theoretical framework are clear, and shown in Fig. 17. We
have only shown the noise sources associated with the active
device itself. Resistors are known to introduce noise as well,
and their contribution is straightforward to include. The noise
of , for example, is naturally incorporated as part of the gate
noise of the following stage. Similar manipulations can be done
for and, of course, .

E. Conclusion

In this Appendix we have shown how optimum local alloca-
tion of feedback can be applied to a common amplifier struc-
ture. Though we avoid explicit inclusion of loading effects in

the main text, it can be seen that they can be included without
disturbing the established framework.
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