
1ABabcdfghiejkl Stanford University
Center for Integrated Systems
Integrated Circuits Lab

Issues in High Frequency
Noise Simulation for

Deep Submicron MOSFETs

Jung-Suk Goo, Chang-Hoon Choi, Francois Danneville✞,
Zhiping Yu, Thomas H. Lee, and Robert W. Dutton

Center for Integrated Systems, Stanford University, USA
✞Institut d’Electronique et de Microelectronique du Nord, University of Lille, France



2ABabcdfghiejkl Stanford University
Center for Integrated Systems
Integrated Circuits Lab

Outline

• Introduction

• Classical Noise Optimization

• New Noise Optimization for CMOS RF

• Bias Dependent Intrinsic Noise Performance

• Direct Tunneling Current

• Conclusions and Open Questions

• Acknowledgments



3ABabcdfghiejkl Stanford University
Center for Integrated Systems
Integrated Circuits Lab

Introduction
(RF CMOS)

• Rapid ft increase of MOSFETs, driven by the
microprocessor industry, attracts RF designers.

• Promise of realizing single chip system solution.

• Noise behavior in short channel MOSFETs is not
well understood yet, especially for state-of-art
MOSFETs technologies.

• Substantial gate leakage current in ultrathin oxides.
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Introduction (Continue)
(MOSFET Noise)

• Flicker (1/f) Noise
✧ Dominant up to few MHz range

• Shot Noise
✧ Dominant in the subthreshold region

✧ Important in MOSFETs with ultrathin oxides below 4nm

• Thermal Noise (Velocity Fluctuation Noise)
✧ Dominant in high frequencies
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Classical Noise Optimization

• In general,

• Minimum noise is

when
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Classical Noise Optimization (Continue)

• No relation between the optimum noise match
source admittance (Yopt) and the optimum power
gain condition.
✧ Possible to minimize the noise figure with little or no gain.

✧ Possible to the minimize the noise figure with a poor
impedance match.

• Does not consider power consumption directly.

• Device is given with fixed characteristics.
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New Noise Optimization for CMOS

• Permitting selection of device geometries.
✧ Gain-constrained noise optimization.

✧ Power-constrained noise optimization.

• More freedom in bias point selection.
✧ Excess drain noise in short-channel MOSFETs.

✧ Induced gate noise in GHz range (partially correlated to drain
noise).

✧ Exhaustive noise information for the entire operating
conditions is needed.
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(Hybrid Approach)
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Simulation Method (Continue)

(Hybrid Approach)

• TSUPREM4 (2D process simulator)
✧ Accurate structure and doping for complex processing

• MEDICI (2D device simulator)
✧ Hydrodynamic model captures the physics required in short

channel MOSFETs

• MONO (1D MOsfet NOise simulator)
✧ Non-uniform active transmission line + IFM

✧ Fast noise calculation
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Simulation Method (Continue)
(Interface between 2D and 1D)
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Simulation Method (Continue)
(Open Questions)

• Applicability of the Langevin stochastic source
✧ Hydrodynamic transport formulation shows promise down to

0.25µm

✧ Nonstationary effects ?

✧ Space correlations ?

• Applicability of conventional IFM
✧ Extendable beyond 0.25µm ? (Especially Lg < 0.1µm)
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Direct Tunneling
(Tunneling Mechanism)

Φb Vox Φb
Vox

Vox < ΦbVox > Φb

Fowler-Nordheim
Tunneling

Direct
Tunneling
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Direct Tunneling (Continue)

(Impact on Noise Calculation)

• Additional conductances
✧ Smaller than ωCgs and ωCgd

from MHz range

• Extra noise sources
✧ Introduce gate shot noise

✧ Subsequently introduce
drain shot noise as well

✧ Uncorrelated with channel
noise sources
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Direct Tunneling (Continue)
(Open Questions)

• Drain shot noise becomes comparable to the drain
thermal noise in oxides below 2nm.

• Rigorous modeling of the tunneling current is
prerequisite.
✧ Involves multi-dimensional Schrodinger equation (Unsolved

problem to date).

✧ Need to take into account various process conditions for on-
going dielectric related researches (e.g. oxinitride)

..
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Conclusions and Open Questions

• Bias dependent noise modeling
✧ Must be exhaustive for the entire operating condition as

CMOS RF design permits selection of device geometry.

✧ Extendability of the conventional IFM approach beyond
0.25µm (Especially below 0.1µm) is open to question.

• Direct tunneling current
✧ Oxides below 4nm introduces substantially large leakage and

subsequently shot noise.

✧ Multi-dimensional Schrodinger equation : unsolved to date
..
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