# Excessive High-Frequency Drain and Gate Current Noise in Short-Channel MOSFETs

Gleb V. Klimovitch

Thomas H. Lee, Yoshihisa Yamamoto

**Electrical Engineering Department** 

**Stanford University** 



July 28, 1997





- Divide the channel into physically infinitesimal *independent* voltage noise sources
- Find the contribution of each noise source to drain and gate noise currents
- Integrate these contributions over the channel length



# Noise Calculations in Long vs. Short-Channel Devices

Long channels:

- Gradual Channel Approximation (GCA) applies
- Low-field regime  $\rightarrow$  Nyquist-Johnson theorem for voltage noise density may be used:  $\Delta \overline{v_n^2} = 4k_B T_0 \Delta r \Delta f$

Short-channel devices in saturation:

- Velocity saturation occurs in a significant fraction of the channel, where GCA does not apply
- Nyquist-Johnson theorem does not hold



# Results for HF Drain Current Noise in Long-Channel MOSFETs



For short-circuited gate and drain, the drain current noise is:  $\overline{i_d^2} = \gamma 4k_BTg_{d0}\Delta f$ .

The noise factor  $\gamma$  is close to 2/3 in saturation.

Reflected as a gate voltage noise, it is:  $\overline{v_g^2} \equiv \overline{i_d^2}/g_m^2 \sim 1/\sqrt{I_D}$ , a decreasing function of the drain current  $I_D$ .



### Results for HF Gate Current Noise in Long-Channel MOSFETs

For short-circuited gate and drain, the gate current noise is:

$$\overline{i_g^2} = \delta 4k_B T \frac{\omega^2 C_{gs}^2}{5g_{d0}} \Delta f$$

The noise factor  $\delta$  is close to 4/3 in saturation.

The correlation coefficient c between gate and drain current noise is:

$$c \equiv rac{\overline{i_g i_d}}{\sqrt{\overline{i_d^2} \, \overline{i_g^2}}} pprox 0.395 j \; .$$

SUPERVISED BOR

HF Current Noise in Short-Channel MOSFETs

#### Voltage Noise Temperature

Definition of  $T_n$ :  $\Delta \overline{v_n^2} = 4k_B T_n \Delta r \Delta f$ ,

 $T_n(E) \neq T_0$  starting from fields  $E \sim E_c$ .

 $T_n$  strongly depends on the differential mobility:

$$T_n(E) = T_0 \frac{D_{\parallel}(E)\mu_0^2}{D_0\mu_d(E)^2}$$

 $T_n$  rises sharply when velocity saturation occurs and, in general, continues to increase as field is increasing.

# Drain Current Noise due to Hot Electrons as a Function of Drain Voltage

The hot-electron drain current noise is:  $\overline{i_d^2} \sim \frac{I_D}{L_{eff}^2} \int_{L_c}^{L_{tot}} \frac{T_n(E)}{E^2} dy$ . As device enters saturation, the noise current increases fast until

the length of the saturation, the holde current increases last until field length scale:  $L_{tot} - L_c \sim l_E$ .

At higher drain voltages, noise current grows slower due to noise of hot electrons near drain and channel length modulation.





# Input-Reflected Drain Current Noise due to Hot Electrons may be an *increasing* Function of Drain Current

In strong saturation, for a constant channel field distribution, the input-referred hot electron drain current noise is:  $\overline{v_g^2}_{he} \sim I_D/g_m^2$ . In the best case,  $g_m \sim \sqrt{I_D}$ , so that  $\overline{v_g^2}_{he}$  is independent of the drain current.

Otherwise,  $\overline{v_{g_{he}}^2}$  is an increasing function of  $I_D$  (e.g., if velocity saturation effects are important).



would be completely correlated with drain current noise:

$$q_g = \tau_{ch} i_d$$
, where  $\tau_{ch} \equiv \partial q_{ch} / \partial I_D \approx L_{tot} / u_{sat} - \tau_{tr1}$ .



### Gate vs Drain Current Noise due to Hot Electrons

Weak saturation:  $\Delta_1 \delta_{he} \approx 10 [V_{GT}/V_{D \ sat}]^2 \Delta \gamma_{he} \gg \Delta \gamma_{he}$ .

Starting from moderate saturation, hot electron gate current noise is a superlinear function of hot electron drain current noise due to drain field fluctuations:

$$\Delta_2 \delta_{he} \sim \Delta_1 \delta_{he} \left[ \frac{l_E}{L - l_E} \frac{\epsilon_{si}}{\epsilon_{ox}} \frac{E_D}{E_c} \right]^2 \sim 10 \Delta \gamma_{he} \frac{E_D^2}{E_c^2} .$$



(Imaginary) Correlation Coefficient between the Gate and Drain Current Noise

Originates from three sources:

- Cold electron noise (gives positive contribution)
- Hot electron channel charge noise (sign depends on sign of  $\tau_{ch}$ : negative in weak/moderate saturation)
- Hot electron drain field noise (gives negative contribution)





#### Comparison with Experiment from [4]

Very simplified noise temperature  $T_n(E > E_c) \approx 10T_0$  is used.

| $V_{GT}$        | 4.5  | 4.5  | 3.5  | 2.5  | 1.5  | 3.5  | 2.5  |
|-----------------|------|------|------|------|------|------|------|
| $V_D$           | 5    | 4    | 4    | 4    | 4    | 3    | 3    |
| $\gamma_{exp}$  | 3.42 | 2.55 | 2.68 | 3.31 | 4.78 | 2.38 | 2.96 |
| $\gamma_{cald}$ | 2.72 | 2.39 | 2.97 | 3.78 | 4.69 | 2.44 | 2.77 |
| %               | -20  | -6   | 11   | 14   | -2   | 3    | -6   |



### Conclusions

- Techniques to calculate drain current noise, gate current noise, and their correlation coefficient are outlined, results independent on a particular functional dependence of the noise temperature on field are given
- Input-referred hot electron noise is not a decreasing function of drain current in strong saturation
- Gate current noise factor grows much faster than drain current noise factor
- To keep drain and gate noise factors low, the drain voltage  $V_D$ should not exceed the saturation voltage  $V_{Dsat}$  by more than a few  $l_E E_c$ , or roughly one volt