A 1.4-GHz 3-mW 0.5-µm CMOS LC Low Phase Noise VCO Using Tapped Bond Wire Inductors

August 10, 1998

Tamara I. Ahrens & Thomas H. Lee

Center for Integrated Systems Department of Electrical Engineering Stanford University

Goals of Design

- GPS 1.575 GHz, IF=200MHz
- Low Power
- Minimum Phase Noise
- Tunable
- Reasonable Area

Ring Oscillator vs. LC Oscillator

Ring Oscillator: Dissipates all stored energy each cycle → High power dissipation Large tuning range LC Oscillator: Dissipates 1/Q of the energy in the resonant tank Lower power dissipation Stored energy Dissipated energy 2π

How To Achieve Low Phase Noise

More Power

Higher Q Resonant Tank

(use of bond wires and tapping)

• Single-ended Symmetry

(Hajimiri and Lee, "A general theory of phase noise in electrical oscillators," *IEEE J. Solid-State Circuits*, vol. 33, no. 2, Feb. 1998.)

Tamara I. Ahrens[■] Center for Integrated Systems ■ Department of Electrical Engineering ■ Stanford University

Output Spectrum of Oscillator

Results

Frequency Power Phase Noise for various offsets

Tuning Range Process Technology 1.4 GHz

3 mW at 3.0V supply

- -83 dBc/Hz @ 10kHz
- -107 dBc/Hz @ 100kHz -122 dBc/Hz @ 600kHz

220 MHz (17%)

0.5- μm standard CMOS

Figure of Merit- Various Technologies

Phase Noise	(PN)
	· /

<u>Technology</u>	<u>Freq</u>	Power	<u>@100kHz</u>	<u>FOM</u>
This work	1.4 GHz	3 mW	-107 dBc/Hz	315 dBF
CMOS [6]	1.8 GHz	6 mW	-105 dBc/Hz	312 dBF
BJT [4]	1.1 GHz	2 mW	-95 dBc/Hz	302 dBF
BiCMOS [5] BJT oscillato	1.8 GHz	70 mW	-88 dBc/Hz	285 dBF

Figure of Merit(dBF) = 20 log(freq) - PN - 10 log(power)

Figure of Merit- Ring vs. LC

Phase Noise (PN)

Design @100kHz Power FOM Freq 1.4 GHz This work 3 mW -107 dBc/Hz 315 dBF -75 dBc/Hz Ring Oscillator 1.8 GHz 10 mW 280 dBF 20 mW -80 dBc/Hz **Ring Oscillator** 1.2 GHz 278 dBF 80 mW **Ring Oscillator** 5.4 GHz -79 dBc/Hz 284 dBF

Figure of Merit(dBF) = 20 log(freq) - PN - 10 log(power)

Conclusions

- Tapping allows a greater amount of energy in the resonant tank, thereby increasing the signal energy without increasing the noise.
- Independently, single-sided symmetry reduces the up-converted low frequency phase noise contribution from the active devices.

• CMOS is a growing and attractive solution for RF oscillators.

Acknowledgements

For their various contributions, the authors would like to thank:

- Ali Hajimiri
- David M. Colleran
- Sunderarajan Mohan
- Robert W. Dutton
- Maria Perea
- Michael A. Swartwout
- Leah K. Meagher