Session FP 16: Paper 16.6

Fractal Capacitors

Hirad Samavati, Ali Hajimiri, Arvin R. Shahani, Gitty N. Nasserbakht¹, Thomas H. Lee

Stanford University, Stanford, CA

¹Texas Instruments, Dallas, TX

Outline

- Motivation
- Fractal capacitors
- CAD tool
- Measurements
- Conclusions

Motivation

- Demand for linear capacitors
- Area efficiency
- Improvement with process scaling
- Reduction of bottom-plate capacitance

Traditional Capacitors

• Gate Capacitance:

High capacitance per unit area Nonlinear Requires DC bias voltage Low breakdown voltage Medium Q

• Junction Capacitance:

Highly nonlinear Requires DC bias voltage Sensitive to process variations Low Q Large temperature variation

• Metal to Metal / Poly Capacitance:

Linear High Q Small temperature variation Low capacitance per unit area

Vertical vs. Lateral Flux

• Lateral flux increases the total amount of capacitance.

Fractal Geometries

• Some fractals have finite area but infinite perimeter.

Fractal Capacitor

 Quasi fractal geometries can be utilized to increase capacitance per unit area.

3-D representation of a fractal capacitor using a single metal layer.

Layout Issues

Cross connection

• Fractal dimension

Reduction of the Bottom-Plate Capacitance

- Area is smaller.
- Some of the field lines terminate on the adjacent plate instead of the substrate.

Scaling

 Unlike conventional parallel-plate structures, the capacitance per unit area increases as the process technologies scale.

Other Advantages

- Lateral flux capacitors shift the burden of matching away from oxide thickness to lithography.
- The effect of systematic lithography offset is reduced due to pseudo-random nature of the structure.
- Capacitance density can be traded for lower series resistance.

CAD Tool

Fractal Construction: An Example

- Choose an "initiator."
- Replace each segment of the initiator by a "generator."
- Continue recursively.

Die Micrograph

Horizontal spacing=0.6 μ m Vertical spacing=0.8 μ m Area=24,000 μ m²

Capacitance Estimation

$$C_{lateral} = K \frac{(\sqrt{A})^{D}}{(w+s)^{D-1}} \times t$$

- w: Minimum width of the metal.
- *s*: Minimum spacing between two adjacent strips.
- A: Area of the fractal capacitance.
- *t*: Thickness of the metal layers.
- K: Proportionality factor that depends on the family of fractals being used.
- D: Fractal dimension.

Boost Factor vs. Lateral Spacing

Measurements

Best-Fit Parameters

Measurements

Capacitance distribution across the wafer

- There is a good agreement between the measurements (5.5pF mean) and the simulations (5.4pF).
- 90% of the measured series inductance is due to connecting stubs.
- About 80% of the series resistance can be attributed to vias and connecting stubs.
- Both series resistance and inductance are dominated by non fundamental mechanisms.
- The overall improvement over a standard parallel plate capacitor is a factor of 2.3.

Conclusions

- Fractal capacitors use chip area more efficiently.
- Fractal capacitors are linear.
- The capacitance density improves with the scaling of process technologies.
- Bottom-plate parasitic capacitance is reduced.
- A CAD tool to automatically generate custom fractal layouts has been developed.