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ABabcdfghiejkl Biotelemetry is Crucial for Space Life Sciences 

• On the ground, animals can be housed separately for 
data collection, and tethered systems are feasible. In 
space, where volume is very costly, animals must be 
group-housed, making tethers undesirable.

• In vivo experiments often require anesthetized animals 
and hard-wired connections to the implant, creating a 
risk of infection due to transcutaneous leads. 

• NASA-Ames Research Center  is developing the 
Advanced BioTelemetry System (ABTS) to conduct 
space-based animal research. 

• Implantable biotelemetry supports real-time data 
gathering. It allows experiments with awake and 
unrestrained animals, and eliminates problems with 
lead breakage, movement artifacts, and ground loops.

• NASA  needs a low power implantable transmitter that 
can relay biosensor data using the 174-216MHz band.
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ABabcdfghiejkl Human Applications for Biotelemetry

• NASA  researchers are collaborating with doctors at the University of 
California-San Francisco's (UCSF) Fetal Treatment Center  to adapt 
space biosensor and biotelemetry technology for the monitoring of fetuses 
with life-threatening congenital conditions.

• At UCSF’s Fetal Treatment Center  there is a need for telemetry of 
physiological parameters of human fetuses for monitoring and identifying 
distress after surgery.

• A telemetry implant that will monitor heart rate, temperature, pH, and 
amniotic fluid pressure is required to operate in utero for up to 3 months.
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Goal: An Implantable Biotelemetry Transmitter

• Frequency: 174-216MHz

• Data Rate: 100 kbps

• Modulation: Quadrature Phase Shift 
Keying (QPSK)

• Range: 1 meter

• Power source: 3.6 V, 750mAH lithium

• Implant lifetime: 100 hours (continuous)

• Implant volume: 5 cm3 (including battery)

• Our goal is to design and build a low-power 
radio transmitter in CMOS suitable for short 
range biosensor and implantable use.
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• The most important parameter of 
an implanted biotelemetry system 
is power dissipation. 

• A significant portion of the power 
budget is allocated to the 
generation of the RF carrier. 

• Traditionally, frequency 
synthesizers have been 
implemented using phase-locked 
loops (PLLs). 

• The major sources of power 
dissipation are the VCO (73%) and 
the frequency divider (22%).

Phase-locked Loop Frequency Synthesizer

Power budget for a typical CMOS PLL frequency 
synthesizer used in microprocessor clock generation 1.

1V. Kaenel, et al., “A 320MHz, 1.5mW at 1.35V CMOS PLL for Microprocessor Clock Generation", 
Intl. Solid-State Circuits Conference, Feb. 1996, pp.132-133. 
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• A linear analysis using a single pole filter shows that this is a first order 
system, and thus inherently stable (neglecting sampled-data effects).

Frequency-locked Loop Frequency Synthesizer

LF s( ) 1
sC
------=

FOUT s( ) KV VC s( )⋅=

VD s( ) KD FREF FOUT–( )⋅=

FOUT
FREF
----------------- s( ) 1

1 s ωN⁄+
------------------------= ωN

KV KD⋅

C
---------------------=

• Closed loop response: • where ωΝ (rad/s) is the loop bandwidth 
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FLL vs. PLL Frequency Synthesizers
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• The controlled variable in a FLL is frequency not phase.

FOUT
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----------------- s( ) 1

1 s ωN⁄+
------------------------=
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• This FLL does not require a frequency divider, which represents 22% 
of the power budget for the PLL example just shown. 

• The FLL can perform frequency comparison directly without a divider 
by using a DFD implemented with switched capacitor circuits. 

• The output frequency is determined by the capacitor ratio, C1/C2, 
and the reference frequency.

Differential Frequency Discriminator

FOUT FREF

C1
C2
-------

 
 
 
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• In a synthesizer application, the reference frequency source 

is usually a crystal oscillator with very low phase noise.

• A PLL tracks the phase noise of the reference signal, 
relaxing the close-in phase noise requirements of the VCO.

• However, a FLL tracks the VCO’s frequency, not phase, 
forcing more stringent requirements on the VCO. 

• The VCO’s power dissipation is determined by the frequency 
of operation and the phase noise performance required. 

• In biotelemetry, data rates are low (10-100kbps), and 
channel spacing wide (3MHz), relaxing the phase noise 
requirements for the VCO.

Power Dissipation vs. Phase Noise
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What is Phase Noise?

fo 
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• The output power of an oscillator is not 
concentrated exclusively at the carrier 
frequency alone.

• The spectral distribution on either side of 
the carrier is known as spectral sidebands.

PC

∆f f

PSSB

PSSB
PC

---------------

• Phase noise power is represented as a 
ratio of power in 1Hz bandwidth in one 
sideband to the power of the carrier.

• This ratio is specified in units of dBc/Hz at 
some frequency offset from the carrier.

dBc/Hz 
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Oscillators are Time-Variant Systems

• A current impulse injected at the 
peak only changes the amplitude 
and has no effect on the phase.

• A current impulse injected at the zero-
crossing only changes the phase and 
has minimal effect on the amplitude.

hφ t τ,( )
Γ ω0τ( )

qmax
-------------------u t τ–( )=

• where the Impulse Sensitivity Function Γ(x) is a periodic function.

•  and qmax is the maximum charge displacement in the tank.

C Li(t)
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ABabcdfghiejkl Impulse Sensitivity Function for Ring Oscillators

t

Vout t( )

t
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• Γ(x) can be calculated directly from the waveform.

• Since Γ(x) is periodic, it may be expressed as a Fourier series, and used in a 
superposition integral to determine the phase noise spectrum resulting from known 
device and circuit noise1. 

1T. Lee, "CMOS RF: No Longer an Oxymoron", IEEE GaAs IC Symp., Oct. 1997, pp.244-247. 
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Upconversion of Device 1/f Noise

• Phase noise close to the carrier results from the folding of device noise centered 
at integer multiples of the carrier frequency.

• The upconversion of device 1/f noise occurs through c0, the DC value of the ISF.

• The DC value of the ISF is governed by the symmetry properties of the waveform.
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ABabcdfghiejkl Hajimiri Phase Noise Model 2

2A. Hajimiri, T. Lee, "A General Theory of Phase Noise in Oscillators", IEEE Journal of Solid-State Circuits (in press).
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• Phase Noise in 1/f2 region is due 
to device thermal noise.

• Phase Noise in 1/f3 region is due to device 1/f noise.

• It is commonly assumed that the 1/f3 corner of phase 
noise is the same as the 1/f corner of the device 
noise spectrum.This is NOT the case.

ω
1 f

3⁄
ω1 f⁄

c0
c1
-----

 
 
 2

⋅≈

f

Sφ f( )

1

f2
----

c0

c1

ω1 f⁄
ω

1 f3⁄

1

f3
----



18 of 27

A Low Power Frequency Synthesizer for Wireless Biotelemetry

Rafael J. Betancourt Zamora • Center for Integrated Systems • Department of Electrical Engineering • Stanford University 

ABabcdfghiejkl Outline

• Introduction

• Frequency Synthesizer Design

• Phase Noise Theory

• Voltage-controlled Oscillator Design

• Simulation and Measured Results

• Conclusion and Acknowledgements



19 of 27

A Low Power Frequency Synthesizer for Wireless Biotelemetry

Rafael J. Betancourt Zamora • Center for Integrated Systems • Department of Electrical Engineering • Stanford University 

ABabcdfghiejkl

• The VCO design is critical in the performance of the FLL synthesizer as the phase 
noise at the output of the FLL is solely a function of the phase noise of the VCO. 

• The VCO consists of a 4-stage differential ring oscillator3. 

•  Frequency control is achieved by changing the biasing of the buffer stages which 
determines the delay through each cell.

Voltage-controlled Oscillator Design

3 A.W. Buchwald, K.W.Martin, "High Speed Voltage Controlled Oscillators with Quadrature Outputs", Electronics Letters, 
14 Feb. 1991, Vol. 27 No. 4, pp.309-310. 
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• The differential buffers used have been shown to have 
excellent noise and power supply rejection characteristics4.

• The layout of the ring oscillator is symmetrical and load 
balanced to avoid any skewing between the phases. 

4 M. Horowitz, et al., "PLL Design for a 500MB/s Interface", Intl. Solid-State Circuits Conference, Feb. 1993, pp.160-161. 

VCO BIAS

DECODER

MODULATOR BIAS

30µm

Vctl

inp

outm

inm

outp

Vpbias

Vnbias

Vdd



21 of 27

A Low Power Frequency Synthesizer for Wireless Biotelemetry

Rafael J. Betancourt Zamora • Center for Integrated Systems • Department of Electrical Engineering • Stanford University 

ABabcdfghiejkl

• IDD is the tail current of a single stage

• EC is the critical field (e.g., 4.918 V/µm)

• LEFF is the gate length of the 
differential-pair devices (e.g., 0.5µm)

•  We selected the 100µA curve, for a 
total current drain of 500µA at 200MHz.

Phase Noise Analysis of Ring Oscillator VCO
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-----------------------------------
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Single-sideband phase noise 
(dBc/Hz) for a differential ring 
oscillator in the 1/f2 region 
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Test Results: VCO Transfer Characteristic

• Fabricated through MOSIS 
using the HP 0.5µm CMOS 
process. 

• The VCO voltage-to-
frequency transfer 
characteristic was measured 
for different supply voltages.

• Tuning Range: 350kHz-
707MHz @3V 

• VCO Gain = 321MHz/V @3V
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• Using an HP8590B 

spectrum analyzer, the 
phase noise was measured 
at -82dBc/Hz for 100kHz 
offset from a 200MHz 
carrier. 

• These measurements are 
within 2dB of the predicted 
values for frequency offsets 
between 10Hz and 1MHz.

Test results using RDI’s NTS-1000A phase noise measurement test set, along with the 
theoretical phase noise performance predicted by the Hajimiri model (fc=150.9MHz). 

Test Results: Phase Noise
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• The frequency-locked loop (FLL) synthesizer 
imposes more stringent phase noise 
requirements on the VCO. 

• A design technique using the Hajimiri phase 
noise model was presented. 

• A 200MHz ring oscillator VCO was designed 
and fabricated in 0.5µm CMOS.

• Measurements of phase noise show good 
agreement with the theory.

Conclusions
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