A Low Power Frequency Synthesizer for Wireless Biotelemetry

October 29, 1997

Rafael J. Betancourt Zamora
Center for Integrated Systems
Department of Electrical Engineering
Stanford University
Outline

• Introduction
 • Frequency Synthesizer Design
 • Phase Noise Theory
 • Voltage-controlled Oscillator Design
 • Simulation and Measured Results
 • Conclusion and Acknowledgements
Biotelemetry is Crucial for Space Life Sciences

- On the ground, animals can be housed separately for data collection, and tethered systems are feasible. In space, where volume is very costly, animals must be group-housed, making tethers undesirable.
- *In vivo* experiments often require anesthetized animals and hard-wired connections to the implant, creating a risk of infection due to transcutaneous leads.

- **NASA-Ames Research Center** is developing the Advanced BioTelemetry System (ABTS) to conduct space-based animal research.
- Implantable biotelemetry supports real-time data gathering. It allows experiments with awake and unrestrained animals, and eliminates problems with lead breakage, movement artifacts, and ground loops.
- **NASA** needs a low power implantable transmitter that can relay biosensor data using the 174-216MHz band.
Human Applications for Biotelemetry

- NASA researchers are collaborating with doctors at the University of California-San Francisco's (UCSF) Fetal Treatment Center to adapt space biosensor and biotelemetry technology for the monitoring of fetuses with life-threatening congenital conditions.
- At UCSF’s Fetal Treatment Center there is a need for telemetry of physiological parameters of human fetuses for monitoring and identifying distress after surgery.
- A telemetry implant that will monitor heart rate, temperature, pH, and amniotic fluid pressure is required to operate in utero for up to 3 months.
A Low Power Frequency Synthesizer for Wireless Biotelemetry

Goal: An Implantable Biotelemetry Transmitter

- Frequency: 174-216MHz
- Data Rate: 100 kbps
- Modulation: Quadrature Phase Shift Keying (QPSK)
- Range: 1 meter
- Power source: 3.6 V, 750mAH lithium
- Implant lifetime: 100 hours (continuous)
- Implant volume: 5 cm³ (including battery)

Our goal is to design and build a low-power radio transmitter in CMOS suitable for short range biosensor and implantable use.
A Low Power Frequency Synthesizer for Wireless Biotelemetry

Outline

• Introduction
• **Frequency Synthesizer Design**
• Phase Noise Theory
• Voltage-controlled Oscillator Design
• Simulation and Measured Results
• Conclusion and Acknowledgements
The most important parameter of an implanted biotelemetry system is power dissipation.

A significant portion of the power budget is allocated to the generation of the RF carrier.

Traditionally, frequency synthesizers have been implemented using phase-locked loops (PLLs).

The major sources of power dissipation are the VCO (73%) and the frequency divider (22%).

A linear analysis using a single pole filter shows that this is a first order system, and thus inherently stable (neglecting sampled-data effects).

Closed loop response:

\[
\frac{F_{OUT}(s)}{F_{REF}} = \frac{1}{1 + s/\omega_N}
\]

\[
\omega_N = \frac{K_V \cdot K_D}{C}
\]

where \(\omega_N\) (rad/s) is the loop bandwidth.
FLL vs. PLL Frequency Synthesizers

- The controlled variable in a FLL is frequency not phase.
This FLL does not require a frequency divider, which represents 22% of the power budget for the PLL example just shown.

The FLL can perform frequency comparison directly without a divider by using a DFD implemented with switched capacitor circuits.

The output frequency is determined by the capacitor ratio, C_1/C_2, and the reference frequency.

$$F_{OUT} = F_{REF} \cdot \left(\frac{C_1}{C_2}\right)$$
In a synthesizer application, the reference frequency source is usually a crystal oscillator with very low phase noise.

A PLL tracks the phase noise of the reference signal, relaxing the close-in phase noise requirements of the VCO.

However, a FLL tracks the VCO’s frequency, not phase, forcing more stringent requirements on the VCO.

The VCO’s power dissipation is determined by the frequency of operation and the phase noise performance required.

In biotelemetry, data rates are low (10-100kbps), and channel spacing wide (3MHz), relaxing the phase noise requirements for the VCO.
Outline

- Introduction
- Frequency Synthesizer Design
 - *Phase Noise Theory*
- Voltage-controlled Oscillator Design
- Simulation and Measured Results
- Conclusion and Acknowledgements
What is Phase Noise?

- The output power of an oscillator is not concentrated exclusively at the carrier frequency alone.
- The spectral distribution on either side of the carrier is known as spectral sidebands.

Phase noise power is represented as a ratio of power in 1Hz bandwidth in one sideband to the power of the carrier.
- This ratio is specified in units of dBc/Hz at some frequency offset from the carrier.
Oscillators are Time-Variant Systems

- A current impulse injected at the peak only changes the amplitude and has no effect on the phase.
- A current impulse injected at the zero-crossing only changes the phase and has minimal effect on the amplitude.

\[
h_\phi(t, \tau) = \frac{\Gamma(\omega_0 \tau)}{q_{\text{max}}} u(t - \tau)
\]

- where the Impulse Sensitivity Function \(\Gamma(x) \) is a periodic function.
- and \(q_{\text{max}} \) is the maximum charge displacement in the tank.
A Low Power Frequency Synthesizer for Wireless Biotelemetry

Impulse Sensitivity Function for Ring Oscillators

\[\phi(t) = \frac{1}{q_{\text{max}}} \left[\frac{c_0}{2} \int_{-\infty}^{t} i(\tau) \, d\tau + \sum_{n=1}^{\infty} c_n \int_{-\infty}^{t} i_n(\tau) \cos(n\omega \tau) \, d\tau \right] \]

- \(\Gamma(x) \) can be calculated directly from the waveform.
- Since \(\Gamma(x) \) is periodic, it may be expressed as a Fourier series, and used in a superposition integral to determine the phase noise spectrum resulting from known device and circuit noise\(^1\).

Phase noise close to the carrier results from the folding of device noise centered at integer multiples of the carrier frequency.

The upconversion of device $1/f$ noise occurs through c_0, the DC value of the ISF.

The DC value of the ISF is governed by the symmetry properties of the waveform.
Hajimiri Phase Noise Model

- Phase Noise in $1/f^3$ region is due to device $1/f$ noise.
- It is commonly assumed that the $1/f^3$ corner of phase noise is the same as the $1/f$ corner of the device noise spectrum. This is NOT the case.

\[
S_\phi(f) = \frac{1}{f^3} \approx \frac{c_0}{f} \cdot \left(\frac{c_0}{c_1} \right)^2
\]

- Phase Noise in $1/f^2$ region is due to device thermal noise.

\[
L\{\Delta \omega\} = 10 \cdot \log \left\{ \frac{\Gamma_{RMS}^2 \cdot i_n^2/\Delta f}{q_{max}^2 \cdot 4\Delta \omega^2} \right\}
\]

Outline

• Introduction
• Frequency Synthesizer Design
• Phase Noise Theory
• Voltage-controlled Oscillator Design
• Simulation and Measured Results
• Conclusion and Acknowledgements
The VCO design is critical in the performance of the FLL synthesizer as the phase noise at the output of the FLL is solely a function of the phase noise of the VCO.

The VCO consists of a 4-stage differential ring oscillator\(^3\).

Frequency control is achieved by changing the biasing of the buffer stages which determines the delay through each cell.

Differential Delay Buffer Design

- The differential buffers used have been shown to have excellent noise and power supply rejection characteristics\(^4\).
- The layout of the ring oscillator is symmetrical and load balanced to avoid any skewing between the phases.

Single-sideband phase noise (dBc/Hz) for a differential ring oscillator in the $1/f^2$ region.

\[
L\{\Delta \omega\} = 10 \cdot \log \left(\frac{64kT}{I_{DD}ECL_{EFF}} \frac{f_o^2}{\Delta \omega^2} \right)
\]

- I_{DD} is the tail current of a single stage.
- E_C is the critical field (e.g., 4.918 V/\(\mu m\)).
- L_{EFF} is the gate length of the differential-pair devices (e.g., 0.5 \(\mu m\)).
- We selected the 100\(\mu A\) curve, for a total current drain of 500\(\mu A\) at 200MHz.
A Low Power Frequency Synthesizer for Wireless Biotelemetry

Outline

• Introduction
• Frequency Synthesizer Design
• Phase Noise Theory
• Voltage-controlled Oscillator Design
• Simulation and Measured Results
• Conclusion and Acknowledgements
Test Results: VCO Transfer Characteristic

- Fabricated through MOSIS using the HP 0.5\(\mu\)m CMOS process.
- The VCO voltage-to-frequency transfer characteristic was measured for different supply voltages.
- Tuning Range: 350kHz-707MHz @3V
- VCO Gain = 321MHz/V @3V
Using an HP8590B spectrum analyzer, the phase noise was measured at -82dBc/Hz for 100kHz offset from a 200MHz carrier.

These measurements are within 2dB of the predicted values for frequency offsets between 10Hz and 1MHz.

Test results using RDI’s NTS-1000A phase noise measurement test set, along with the theoretical phase noise performance predicted by the Hajimiri model ($f_c=150.9$MHz).
Outline

- Introduction
- Frequency Synthesizer Design
- Phase Noise Theory
- Voltage-controlled Oscillator Design
- Simulation and Measured Results
- Conclusion and Acknowledgements
Conclusions

- The frequency-locked loop (FLL) synthesizer imposes more stringent phase noise requirements on the VCO.
- A design technique using the Hajimiri phase noise model was presented.
- A 200MHz ring oscillator VCO was designed and fabricated in 0.5µm CMOS.
- Measurements of phase noise show good agreement with the theory.
Acknowledgements

- This work was partially supported by NASA-Ames Research Center through a Training Grant No. NGT 2-52211.
- We gratefully acknowledge the support of John W. Hines, manager of the Sensors 2000! program at NASA-Ames Research Center.