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Abstract— We demonstrate a truly continuous regulator of oscillator phase alignment suitable for high bandwidth Cartesian
feedback power amplifiers. A new approach to the problem is introduced, which yields a simple nonlinear dynamical controller.
Our prototype achieves accurate regulation (3.8 degrees) at the highest baseband bandwidth reported.

I. INTRODUCTION

Presently there exists a great demand for wireless sys-
tems that achieve high data transmission rates while using
as little power and bandwidth as possible. Maximum data
transfer for a given channel width demands sophisticated
modulation techniques, the best of which require a linear
power amplifier (PA). The strong tradeoff between linear-
ity and power efficiency in PA’s has motivated research into
linearization techniques, of which Cartesian feedback is an
important and promising example [1], [2]. Figure 1 shows
a typical Cartesian feedback system.
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Fig. 1. Typical Cartesian feedback system (this work shown in

dashed lines).

The phase shifter in figure 1 is necessary to ensure syn-
chronous demodulation of the baseband signal. Properly
adjusted, the system functions as two decoupled feedback
loops. Feedback stability margins degrade as this adjust-
ment departs from the optimum, and instability can re-
sult. The exact phase shift required can drift over time,
temperature, and process variations, and usually changes
with carrier frequency, which is particularly troublesome
for frequency-hopping systems. To allow for linearization
at the maximum symbol rate, this phase shift must be
regulated as accurately as possible. In addition, rejection
of drift with temperature demands continuous regulation.
Ohishi et al. [2] demonstrate a close approximation to this:
they exploit the repeated appearance of a predetermined

calibration symbol. Our prototype is the first truly con-
tinuous regulator of local oscillator phase alignment, and
it completely avoids any type of digital signal processing.
Figure 2 details the nonlinear dynamical controller built
around the identity IQ' — QI' = rr'sin(f — '), where I
and @ are Cartesian components of baseband signals, r
and @ are the corresponding polar coordinates, and primed
coordinates denote symbols derived from the demodulated
power amplifier output. Using the notation Af = 6 — @',
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Fig. 2. System-level diagram of phase alignment system.

our circuit can be understood as mechanizing the equation

% = —k[r(t)]2G sin(A0), (1)

where k is a constant of proportionality and gain G is as-
sociated with the integrator.

II. CONSEQUENCES OF PHASE MISALIGNMENT

The demodulated symbol S’ is rotated relative to S by
an amount equal to the local oscillator phase misalignment
¢. To see this, we write the down-converted Cartesian com-
ponents:

I' =
Q' =

(Isinwt + Q coswt) sin(wt + ¢);
(I sinwt + Q coswt) cos(wt + @);



where w is the carrier frequency. Using trigonometric iden-
tities and assuming frequency components at 2w have been
filtered out, we arrive at S':

I' = %(Icos¢+Qsin¢);

Q' = %(—Isinqb + Q cos ).

Ideally, a Cartesian feedback loop functions as two iden-
tical, independent feedback systems. The reality of mis-
alignment forces us to examine the dynamic behavior of
two coupled loops. One method of analysis is to consider
error signals er(s) and eg(s) as shown in Figure 3. We
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Fig. 3. Loop dynamics.

know that for a single feedback loop, the error signal can
be written in the frequency domain as
e(s) = ﬂ
1+ L(s)
Here, L(s) represents all dynamics in the loop and X(s)
is the input. For frequencies of interest, the hope is that
|L(s)| is very large.

In our case, let the phase misalignment be ¢. Further-
more, we set Qg = 0 without loss of generality !. The error
expressions, as a function of the single input I;(s), are now
written:

La(s) — L(s)ex (s) cos ¢ — L(s)eq(s) sin ¢
L(s)er(s) sin ¢ — eq(s)L(s) cos ¢.

where L(s) includes the dynamics of the loop compensation
scheme (H (s)) and the (linearized) dynamics introduced by

the modulator, power amplifier, and demodulator. From
here, it is straightforward to show that

er(s) X(s)
I = n .
1+ L(s)cos¢ + %

er(s)
eq(s)

This reduction of the system to a single-input problem now
yields considerable insight. We identify an effective loop
transmission, Leg (s, ¢), as follows:

IWe do not lose generality as long as we stay with linearized anal-
ysis.

[L(s) sin ¢]*

Len(s,9) = L(s) cos ¢ + 77 ioa

(2)

For perfect alignment, ¢ = 0 and Leg is simply L(s). The
worst alignment is ¢ = Z, for which Leg = [L(s)]?: the
loop dynamics are a cascade of the dynamics in the uncou-
pled case. Unless designed with this possibility in mind,
most choices of H(s) will yield unstable behavior in this
second case. Equation 2 shows that traditional measures
of stability will degrade continuously as ¢ sweeps from 0
to §. This was demonstrated experimentally by Briffa and
Faulkner [3].

III. ALIGNMENT SYSTEM: STABILITY CONCERNS

Our control solution for the phase alignment problem is
the simplest of nonlinear dynamical feedback systems. It
can be seen from equation 1 to have two equilibrium points:
the first, for which the symbols are aligned, is stable; the
second, for which the symbols are misaligned by = radians,
is unstable. For the ideal system represented by equation 1,
this is the extent of a rigorous stability analysis.

The real-world situation can be complicated by dynam-
ics associated with the phase shifter (and, possibly, the
subtractor). If we consider a modulation scheme in which
the magnitude of transmitted symbols is held constant 2,
r(t) in equation 1 loses its time dependence. Linearizing
for small phase misalignments, and including the dynamics
of the phase shifter as P(s), we can represent the system
as shown in figure 4. Drawing the system this way re-
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Fig. 4. Linearized phase regulation system; 'M’ is desired misalign-
ment.

quires some manipulation. The output of the phase shifter
is not really 6, but rather an additive part of 6 that gets
combined with the polar angle of the symbol being trans-
mitted. However, in the absence of phase distortion and
drift, the symbol-by-symbol changes of the polar angle 6
are tracked by identical changes in #'. These symbol-rate
changes are thus invisible to an alignment system, and it is
appropriate to label the output of P(s) as . We can then
include the effects of phase distortion and phase alignment
drift as the additive disturbances shown in figure 4.

One can ensure stability by choosing G such that, for
the largest symbol magnitude, loop crossover occurs before
non-dominant poles become an issue. Fortunately, the drift

2Highly improbable when using Cartesian feedback, of course. Tem-
porarily making this assumption, however, yields insight that is
broadly relevant.



disturbance will normally occur on the time scales associ-
ated with temperature drift and aging [5]. Suppression of
the phase distortion is the domain of the Cartesian feed-
back itself. It follows that for many systems, little of the
design effort need be focused on fast phase alignment.

IV. IMPLEMENTATION

Our prototype can be divided into two basic functional
blocks: the phase shifter and the controller itself. In this
section we describe each in turn, and follow with a discus-
sion of the impact of circuit nonidealities on the system’s
performance.

A. Phase Shifter

The phase shifter was implemented using a quadrature
modulator and an analog control loop, as shown in figure 5.
This control loop forces the sum of the squares of the mod-
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Fig. 5. Phase shifter.

ulator inputs to equal a constant ("Mag’), thereby ensuring
a constant amplitude for the shifted LO. This actually in-
troduces a small change in the math: we write the shifted
LO as

I1,0 sin wt + QLo coswt.
To within a multiplicative constant, this is equal to
cos ¢ sinwt + sin ¢ cos wt.

For this prototype, then, the analog input is proportional
to the sine of the phase shift. A functional block labeled
"arcsin(-)’ effectively exists between the integrator output
and phase shifter input in figure 2.

The complete phase shifter, together with the rest of the
controller, is shown in figure 6. Because of the squaring
functional blocks, there are in general two values of I10
that would satisfy the control loop. The sign of the incre-
mental gain around the loop is positive for one solution and
negative for the other. The comparator in figure 6 ensures
stability by switching the sign of the loop gain based on
the current value of Iro.

The switches on all of the integrators were purely for test-
ing purposes and were manually operated. These familiar
“3-mode integrators” allowed the outputs of the integra-
tors to be held at their last value, to be manually adjusted
with potentiometers, or to operate normally as integrators.

B. Controller

The controller represents a straightforward mapping
from figure 2 to op-amp building blocks. As will be dis-
cussed in subsection IV-C, it was necessary to trim the
output offsets of the AD835 multipliers (from Analog De-
vices). This trimming was crudely accomplished via a po-
tentiometer connected to the summing input of one of the
multipliers.
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Fig. 6. Nonlinear dynamical controller and phase shifter implemen-
tation.

C. Impact of circuit nonidealities

The ability to accurately regulate the phase alignment
depends on the ability to accurately calculate 1Q' — QI'.
Offsets associated with the output buffers of the multipli-
ers and the input of the integrator are particularly trou-
blesome. Consider an input-referred offset of § for the con-
troller integrator, and its effect on the final alignment. We
write

% = G[—«&[r(t))*sin(A8) + 6] = 0.

For our prototype k was approximately 1.3V 1. For a sym-
bol magnitude of 50mV, we can solve for the offset that
results in a 5-degree final misalignment:

§ = (1.3V 1) (50mV)? sin (2”—(5)> =283uV.
360

This example illustrates one of the major challenges that
the analog multipliers introduce: offsets become increas-
ingly intrusive as symbol magnitudes decrease. A 5-degree
misalignment for a symbol magnitude of a volt leads to a
d of 113mV; for a symbol magnitude of 1mV, § = .113uV.

Mitigating this effect is the fact the controller slows for
smaller signals: until offsets dominate, |3—f| scales linearly
with [r(#)]?. These numbers nevertheless suggest that, in
some implementations, it may be necessary to prescale the
inputs of the multipliers according to the known symbol
magnitudes.

In our prototype, the bandwidth of the op-amp subtrac-
tor proved to be a limitation as well. This needn’t be true in
a monolithic implementation, however: accurate subtrac-
tion in the current domain is trivially implemented, and
many multiplier topologies provide output in the form of
currents.



V. RESULTS

The prototype shown in figure 6 was built and tested in
a 250 MHz RF system. Figure 7 shows the test setup. An
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Fig. 7. Test setup.

additional phase shifter was inserted in the control path
and was manually controlled. By varying this phase shift,
we simulated drift normally due to temperature and ag-
ing. Figure 8 shows the outcome of this experiment. The
channel was driven with a 50mV sinusoid, and the @) chan-
nel was grounded. It can be seen that our prototype auto-
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Fig. 8. Measured phase alignment vs. system drift

matically and continuously compensates for misalignments
as large as £88 degrees. Alignment to within 3.8 degrees
is maintained over this entire range of disturbances.

Figure 9 shows system performance as the frequency of
the input sinusoid is varied. It is seen that performance
deteriorates rapidly above 2 MHz. This was due to the
op-amp used to build the subtractor (National Semicon-
ductor’s LMC6484), which has a gain-bandwidth product
of 1.5MHz.
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Fig. 9. Phase alignment vs. Baseband Frequency

The following table 3 compares the prototype with other
examples from the literature.

‘Work Accuracy Baseband Carrier
Bandwidth (GHz)
This work | 3.8 degrees | 2 MHz .25
2 10 degrees | 21 kbaud 90
4 not reported | 25 kHz .22
1 15 degrees | 500 kbaud .90

TABLE I
COMPARISON WITH EXAMPLES FROM THE LITERATURE.

VI. CONCLUSIONS

The inability to continuously regulate phase alignment
has been a major barrier to the widespread use of Cartesian
feedback as a linearization technique [5]. We believe this
work has the potential to lower that barrier considerably,
making it easier to build a Cartesian feedback system that
can operate maintenance-free in a hostile environment.
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