CMOS Operational Amplifier Design and Optimization via Geometric Programming

Maria del Mar Hershenson

Stephen Boyd, Thomas H. Lee

Electrical Engineering Department
Stanford University

July 28, 1997
Main Idea

- Many op-amp design problems can be cast as a special type of convex optimization problems.
- Such problems can appear very difficult, but can be solved very efficiently by recently developed interior-point (IP) methods.
CMOS Op-Amp Design and Optimization via G.P.

Outline

- Convex Optimization
- Posynomial Functions
- Geometric Programming
- Application to a Two-Stage Operational Amplifier
- Results
- Conclusions
CMOS Op-Amp Design and Optimization via G.P.

Convex Optimization

minimize $f_0(x)$

subject to $f_1(x) \leq 0, \ldots, f_L(x) \leq 0$, $Ax = b$

- $x \in \mathbb{R}^n$ is optimization variable
- f_i are convex:

 for $0 \leq \lambda \leq 1$,

 $f_i(\lambda x + (1-\lambda)y) \leq \lambda f_i(x) + (1-\lambda)f_i(y)$
Convex Optimization problems are fundamentally tractable

- computation time is small, grows gracefully with problem size and required accuracy
- large problems solved quickly in practice
- what “solve” means:
 - find global optimum within a given tolerance, or,
 - find proof (certificate) of infeasibility
Posynomial Functions

\[f(x_1, \ldots, x_n) = \sum_{k=1}^{t} c_k x_1^{\alpha_{1k}} x_2^{\alpha_{2k}} \cdots x_n^{\alpha_{nk}} \]

- \(f \) is a real-valued function of \(n \) real, positive variables \(x = (x_1, x_2, \ldots, x_n) \).
- \(c_j \geq 0 \) and \(\alpha_{ij} \in \mathbb{R} \).
- If \(t = 1 \), \(f \) is called a \textit{monomial} function.
- If \(f \) is a posynomial function, \(\frac{1}{f} \) is called an \textit{inverse-posynomial} function.
- Posynomials are \textit{closed under sums, products, and nonnegative scaling}.
Posynomial Functions: Examples

- **Posynomial**

 \[f_1 = 3x_1^{-0.3} + x_2^{1.3} x_3^{4.1} x_5 + 0.25x_1^{14} x_3^{-0.8} x_4^{2} \]

- **Mononomial**

 \[f_2 = 0.25x_1^{14} x_3^{-0.8} x_4^{2} \]

- **Inverse Posynomial**

 \[f_3 = \frac{1}{3x_1^{-0.3} + x_2^{1.3} x_3^{4.1} x_5 + 0.25x_1^{14} x_3^{-0.8} x_4^{2}} \]
Geometric Programming

\[
\text{minimize} \quad f_0(x) \\
\text{subject to} \quad f_i(x) \leq 1, \quad i = 1, \ldots, m \\
g_i(x) = 1, \quad i = 1, \ldots, p \\
x_i > 0, \quad i = 1, \ldots, n
\]

where \(f_i \) are \textit{posynomial} functions and \(g_i \) are \textit{monomial} functions.

The objective function \(f_0(x) \) can be monomial or posynomial.
We can

- *minimize* any posynomial or monomial function
- or *maximize* any inverse-posynomial or monomial function

subject to

- *upper-bounded* posynomial functions
- *lower-bounded* inverse-posynomial functions
- *upper and/or lower-bounded* monomial functions.
CMOS Op-Amp Design and Optimization via G.P.

Two-Stage Operational Amplifier

\[V_{dd} \]

\[M8 \]

\[M5 \]

\[M7 \]

\[+ \]

\[M1 \]

\[M2 \]

\[Rz \]

\[Cc \]

\[M3 \]

\[M4 \]

\[M6 \]

\[-V_{ss} \]

\[CL \]

\[-V_{ss} \]

\[M1 \]

\[Ibias \]

Maria del Mar Hershenson • Department of Electrical Engineering • Stanford University
CMOS Op-Amp Design and Optimization via G.P.

Dimension Constraints

- **Minimum Device Sizes** → Monomial
 \[L_i \geq L_{\text{min}} \quad \text{and} \quad W_i \geq W_{\text{min}} \]

- **Area** → Posynomial
 \[\text{Area} = \alpha_1 C_c + \alpha_2 \sum W_i L_i. \]

- **Systematic Input Offset Voltage** → Monomial
 \[\frac{(W/L)_3}{(W/L)_6} = \frac{1}{2} \frac{(W/L)_5}{(W/L)_7}, \]
 \[\frac{(W/L)_4}{(W/L)_6} = \frac{1}{2} \frac{(W/L)_5}{(W/L)_7}. \]
CMOS Op-Amp Design and Optimization via G.P.

Bias Conditions

- Additional variables \rightarrow Monomial

\[
I_5 = \frac{W_5L_8}{L_5W_8} I_{bias} \quad I_7 = \frac{W_7L_8}{L_7W_8} I_{bias} \quad I_1 = \frac{I_5}{2}
\]

- Transistors in saturation \rightarrow Posynomial
 (Transistors \(M_1 \) and \(M_2 \))

\[
\sqrt{\frac{I_1L_3}{\mu_n C_{ox}/2W_3}} \leq V_{cm,\text{min}} + V_{ss} - V_{TP} - V_{TN}
\]

- Quiescent Power \rightarrow Posynomial

\[
P = (V_{dd} + V_{ss})(I_{bias} + I_5 + I_7)
\]
Transfer Function (I)

- Open Loop Gain \rightarrow Monomial

$$A_v = \left(\frac{g_{m2}}{g_{o2} + g_{o4}}\right) \left(\frac{g_{m6}}{g_{o6} + g_{o7}}\right)$$

- 3-dB Cutoff Frequency \rightarrow Monomial

$$\omega_{3dB} = \frac{-g_{m1}}{A_v C_c}$$

- Unity Gain Frequency \rightarrow Monomial

$$\omega_c = \frac{g_{m1}}{C_c}$$
CMOS Op-Amp Design and Optimization via G.P.

Transfer Function (II)

- Phase Margin Conditions → Posynomial

\[
\frac{\omega_c}{p_2} + \frac{\omega_c}{z_1} \leq \frac{\pi}{2} - \text{PM}_{\text{min}}
\]

or

\[
\frac{\omega_c}{p_2} + \frac{\omega_c}{p_3} \leq \frac{\pi}{2} - \text{PM}_{\text{min}}
\]
Slew Rate

- Slew Rate \rightarrow Posynomial

\[
SR = \min \left(\frac{2I_1}{C_c}, \frac{I_7}{C_c + C_L} \right)
\]

A constraint on slew rate can be written as

\[
\frac{C_c}{2I_1} \leq \frac{1}{SR_{\text{min}}}
\]

\[
\frac{C_c + C_L}{I_7} \leq \frac{1}{SR_{\text{min}}}
\]
CMOS Op-Amp Design and Optimization via G.P.

Noise

- Input-referred Noise Spectral Density → Posynomial

\[
S_i(f) = \frac{v_{in}^2}{\Delta f} = \frac{2K_p}{C_{ox}W_1L_1} \left(1 + \frac{K_n \mu_n L_1^2}{K_p \mu_p L_3^2} \right) \frac{1}{f} \\
+ \frac{16kT}{3\sqrt{2\mu_p C_{ox}(W/L)_1 I_1}} \left(1 + \sqrt{\frac{\mu_n(W/L)_3}{\mu_p(W/L)_1}} \right)
\]

- Total Input-referred Noise → Posynomial

\[
\overline{v_{INT}^2} = \int_{f=0}^{f=f_n} S_i(f) \, df \approx \sum_{f=0}^{f=f_n} S_i(f) \Delta f
\]
CMOS Op-Amp Design and Optimization via G.P.

Other Constraints

- Symmetry \rightarrow Monomial
- Matching Conditions \rightarrow Monomial
- CMRR \rightarrow Monomial
- Gate Overdrive \rightarrow Monomial
- Poles and Zeros \rightarrow Inverse-Posynomial
- ...
Optimal Trade-off Curves (I)

Unity gain bandwidth versus power for different supply voltages

Vdd = 5V
Vdd = 3.3V
Vdd = 2.5V
CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (II)

Maximum unity gain frequency versus power for different output voltage ranges
CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (III)

Maximum gain versus unity gain frequency for different phase margins

Maria del Mar Hershenson ⋅ Department of Electrical Engineering ⋅ Stanford University
CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (IV)

Maximum open loop gain versus phase margin for different unity gain frequencies
CMOS Op-Amp Design and Optimization via G.P.

Optimal Trade-off Curves (V)

Maximum open loop gain versus unity gain frequency for different load capacitances
Conclusions

Geometric Programming problems

- Arise in *many* important *analog circuit* design problems, in particular *CMOS op-amp* design.

- Can be *(globally, efficiently) solved.*

We can

- *automatically, directly from specifications, optimally design* CMOS op-amps.
We gratefully acknowledge Edo Walks, who wrote the geometric programming code.
Final thought . . .

... the great watershed in optimization isn’t between linearity and nonlinearity, but convexity and nonconvexity.
— R. Rockafellar, SIAM Review 1993